MOLECULAR BIOLOGY

New Dinucleotide and Trinucleotide Microsatellite Marker Resources for Cotton Genome Research

O. Umesh K. Reddy,[†] Alan E. Pepper,^{†*} Ibrokhim Abdurakhmonov, Sukumar Saha,[†] Johnie N. Jenkins, Thomas Brooks, Yuksel Bolek, and Kamal M. El-Zik

INTERPRETIVE SUMMARY

The use of microsatellite markers has greatly accelerated the mapping of important traits and the characterization of genome structure in several plant and animal species. Microsatellites (also known as simple sequence repeats) are small, repetitive DNA structures, typically distributed throughout the genome, which are highly mutable and show substantial variation in size (polymorphism). To exploit microsatellites as molecular markers, they are amplified by chain reaction polymerase (PCR); gel electrophoresis or other analytical methods determine the size of the resulting DNA product. In organisms with genomes as large and complex as those of tetraploid cottons, several thousand microsatellite markers will be required for genetic mapping and genome analysis. To date, microsatellites have not been used extensively in cotton, in part because of the complex and laborintensive methods for identifying microsatellites from large genomes.

Here we address the problem of microsatellite marker discovery, and present the initial results from a low-cost, easy-to-use, efficient method for microsatellite capture. Using an optimized protocol, more than 10,000 microsatellitecontaining fragments were obtained from *Gossypium hirsutum* L. genomic DNA. Sequences from 588 of these DNA fragments were determined, and oligonucleotide primers for PCR amplification of 307 microsatellite markers were designed. A subset of markers was tested in a set of G. *hirsutum* L. and *Gossypium barbadense* L. varieties. Approximately 49% showed length polymorphism. Intraspecific polymorphism was observed in some cases. A lack of redundancy with two independently derived microsatellite marker sets implies that there is a large resource of unique microsatellites that have yet to be developed as molecular markers.

ABSTRACT

A collaborative multi-institutional program was initiated to streamline the process of microsatellite capture and characterization, development of microsatellites into informative molecular markers, and dissemination of marker information to the cotton research community. A simple and efficient biotin capture method was optimized and used to capture more than 10,000 fragments. Out of 588 fragments sequenced, nearly all contained a microsatellite repeat structure. Several repeat types were represented, including AGA, GA, CA, and ACA. Primers were designed to amplify 307 unique microsatellite loci (305 nuclear and two chloroplastencoded). One hundred fifty-two microsatellite loci were amplified from G. hirsutum L. cv. TM-1 and Tamcot SP37, and G. barbadense L. cv. Pima 3-79 and Pima S-7. In this comparison, 74 of the primers (~49% of the subset) showed detectable polymorphism. In a comparison of upland G. hirsutum cultivars, ~26% of the primers exhibited intraspecific polymorphism. Polymorphism was widely distributed among the various repeat types and structures (e.g., imperfect and compound repeats). Redundancy with two other previously derived microsatellite marker sets (BNL, CM) was low, implying that the total pool of microsatellites present in the cotton genome is large enough to satisfy the requirements of extensive genome mapping and marker-assisted selection projects.

O.U.K. Reddy, A.E. Pepper, and I. Abdurakhmonov, Dep. of Biology, and T. Brooks, Y. Bolek, and K.M. El-Zik, Dep. of Soil and Crop Sciences, Texas A & M Univ., College Station, TX 77843; S. Saha and J. Jenkins, Crop Sci. Res. Lab., USDA, ARS, P.O. Box 5367, Mississippi State, MS 39762. Received 28 Nov. 2000. †Contributed equally to work. *Corresponding author (apepper@bio.tamu.edu).

Abbreviations: AFLP, amplified fragment length polymorphism; BNL, Brookhaven National Laboratory; CM, cotton microsatellite; EDTA, ethylene diamine tetraacetic acid; PCR, polymerase chain reaction; PVDF, polyvinylidene fluoride; RFLP, restriction fragment length polymorphism; SDS, sodium dodecyl sulfate; SSLP, simple sequence length polymorphism; SSR, simple sequence repeat.

Tse of molecular markers in genome analysis, the systematic mapping of agriculturally important traits, and marker-assisted selection have been greatly advanced by the development of reliable PCR-based markers. These include amplified fragment length polymorphisms (AFLPs) (Zabeau and Vos, 1993; Vos et al., 1995); PCR-RFLP, also known as cleaved amplified polymorphic sequences (Konieczny and Ausubel, 1993); and microsatellites, also known as simple sequence repeats (SSRs) (Akkaya et al., 1992) or simple sequence length polymorphisms (SSLPs) (Bell and Ecker, 1994). Of these PCR-based markers, microsatellites are of particular utility because they are typically both co-dominant and multiallelic in nature. Furthermore, a given pair of microsatellite primers often will amplify a specific microsatellite locus from a diversity of species within a particular genus, sometimes out to the family level (Fredholm and Wintero, 1995; Plaschke et al., 1995; Zardoya et al., 1996; Steinkellner et al., 1997; Westman and Kresovich, 1998). Microsatellite markers are, therefore, readily "portable" among mapping populations; they are potentially useful for studies of genome evolution and comparative genomics and for the efficient utilization of wild and primitive germplasm resources in marker-assisted selection (Tanksley and McCouch, 1997).

McCouch and co-workers (1997) estimated that 5700 to 10,000 microsatellite repeat loci are present in the relatively small rice genome. Many of these loci have been incorporated into a highdensity microsatellite marker map for rice (Akagi et al., 1996; Chen et al., 1997). High-density microsatellite marker maps containing 5264 and 7377 loci have been developed for the human (Dib et al., 1996) and mouse (Dietrich et al., 1996) genomes, respectively. Knapik et al. (1998) constructed a genetic linkage map of zebrafish (Danio rerio) consisting of 705 microsatellite markers with an average resolution of 3.3 cM. The zebrafish map has been expanded recently to include more than 2000 microsatellite loci (Shimoda et al., 1999).

Microsatellite identification and mapping in cotton lags far behind these milestones. More than 500 microsatellite-containing clones, containing mostly (GA)_n repeats, have been identified at the Brookhaven National Laboratory. Several of these sequences are redundant. Primer-pairs for the amplification of ~240 of these loci (designated

BNL for Brookhaven National Laboratory) have been made available to the cotton research community through purchase from Research Genetics, Huntsville, AL. An additional 150 $(GA)_n$ repeat loci (designated CM for cotton microsatellite) have been isolated at Texas A & M University (Connell et al., 1998; Reddy and Pepper, unpublished data, 1999). Liu et al. (2000) reported on the chromosomal assignment of several BNL and CM microsatellite markers using cytogenetic stocks. Despite these advances, a large number of additional microsatellite markers will be needed to achieve the goals of the International Cotton Genome Initiative and to meet the needs of marker-assisted selection applications.

In the past, microsatellite loci were identified by surveys of genomic and cDNA sequence databases, and by systematic screening of DNA libraries using colony hybridization with radioactively labeled repeat oligonucleotides (Condit and Hubbell, 1991; Akkaya et al., 1992; Morgante and Oliver, 1993; Wu and Tanksley, 1993; Bell and Ecker, 1994). These methods are typically costly, time-consuming, and laborintensive. More recently, various approaches have been employed to enrich libraries in microsatellite-containing clones (Karagyozov et al., 1993; Edward et al., 1996; Lench et al., 1996), including methods employing the hybridization of adapter-ligated genomic DNA fragments to biotinylated oligonucleotides and their subsequent capture using streptavidin-coated magnetic beads (Kijas et al., 1994; Prochazka, 1996; Connell et al., 1998).

In the present study, a large number of new microsatellite sequences, comprising a diversity of dinucleotide and trinucleotide repeat structures, were retrieved from the G. hirsutum L. genome using an optimized and highly simplified biotin capture protocol. On the basis of sequence analysis of these captured fragments, appropriate primers were designed for amplification of these microsatellite loci in cotton genetic and genomic research. In addition, a subset of these markers was tested for polymorphism in G. hirsutum L. and G. barbadense L. to evaluate their informativeness in interspecific and intraspecific mapping populations. The potential value of these microsatellites in marker-assisted selection, comparative genomics, and efficient germplasm utilization is discussed.

104

105

MATERIALS AND METHODS

Microsatellite Isolation

A microsatellite-enriched library was prepared by a highly modified and simplified protocol based on the biotinylated-oligonucleotide capture methods of Kijas et al. (1994) and Prochazka (1996). In our protocol, no size fractionation steps or radioactive hybridizations were employed. Genomic DNA was isolated from G. hirsutum L. cv. Tamcot Sphinx by the method of Iqbal et al. (1997). A 2-µg sample of genomic DNA was digested for 3 h in a single reaction mixture containing restriction endonucleases HaeIII, RsaI, and DraI (20 units of each), as well as 50 ng of RNaseA. This digestion resulted in a diverse population of blunt-ended restriction fragments with an average size of ~550 bp. Digested DNAs were purified using a QIA-quick PCR purification column (Qiagen, Valencia, CA), eluted with 50 µL of 5 mM Tris-pH 8.0, then dried completely under vacuum. The double-stranded adaptor molecule AP11/12 was prepared by mixing equal molar amounts of oligonucleotides AP11 (5'CTCTTGCTTAGATCTGGACTA3') and AP12 (5'pTAGTCCAGATCTAAGCA-AGAGCACA3', where p = 5' phosphate), heating to 94°C, then cooling to 25°C over a period of 5 h. Digested genomic DNA fragments were resuspended in a 30-uL ligation reaction containing 100 ng of AP11/12 double-stranded adaptor and 30 Weiss units of T4 DNA ligase. Ligation was carried out at 14°C for 16 h.

Preamplification of adaptor-ligated products was performed using $2 \mu L$ of the ligation reaction as a template for 10 cycles of PCR in a 50-µL reaction volume using the single primer AP11. An annealing temperature of 55°C was employed in all PCR reactions. Approximately 100 ng of the preamplified product was then added to a singlereaction mixture containing 6X SSC (0.9 M NaCl, 90 mM sodium citrate, pH 7), 0.1% SDS (sodium dodecyl sulfate), and 200 ng each of biotinylated oligos b(TA)30, b(CA)20, b(GA)20, b(AGA)15, $b(TGA)_{15}$, and $b(ACA)_{15}$ (b = 5' biotinylation). After denaturation at 95°C for 5 min, preamplified genomic DNA fragments were annealed in the presence of biotinylated oligonucleotides for 1 h at 60°C, then added to 200 μ g of fresh streptavidin-coated paramagnetic beads (Promega, Madison, WI) previously equilibrated with 6X

SSC. Beads were incubated at 60°C with gentle agitation for 15 min, then the liquid was removed by separation using a magnetic stand (Stratagene, San Diego, CA). Beads were washed twice in 300 µL of 6X SSC, 0.1% SDS for 15 min at room temperature with gentle agitation. Beads were further washed twice in 300 µL 6X SSC, 0.1% SDS for 15 min at 60°C with gentle agitation. Finally, beads were briefly washed twice with 6X SSC at room temperature. After removing the final wash, captured DNAs were eluted from the beads with the addition of $100 \,\mu\text{L}$ of $60^{\circ}\text{C} \ 0.1 \,M$ NaOH. After neutralization with 100 μ L of 1 M Tris-pH 7.5, captured DNAs were desalted and equilibrated with 10 mM Tris-pH 8.0, 1 mM EDTA-pH 8.0 (to a final volume of $\sim 50 \,\mu$ L) using a 100-kDa MW cutoff size filtration column (Millipore, Bedford, MA). Five µL of desalted DNA sample were used as a template for 30 cycles of PCR in a 50-µL reaction volume using primer AP11. Six microliters of the resulting PCR reaction (~60 ng) was cloned into the TA-cloning vector pCR4-TOPO through topoisomerasemediated ligation (Invitrogen, San Diego, CA) and chemically transformed into competent Escherichia coli TOP10. Recombinant colonies were identified by positive selection through insertional inactivation of the ccdB (control of cell death) open reading frame. Colonies were transferred to 96-well microtiter plates for archival storage. Additional experimental details on the microsatellite capture method can be found at our cotton microsatellite resources Web site (http://plantbiol.tamu.edu/cottonSSRs/htm).

Sequence Analysis

Recombinant bacterial colonies were inoculated into 300 µL of 2X YT broth in a 96-well 0.6-mL-deep plate (Marsh Bioproducts, Rochester, NY). Cultures were agitated at 500 rpm in a HiGro high-density shaking-incubator (GeneMachines, San Carlos, CA) for 16 to 18 h at 37°C. The bacteria were pelleted by centrifugation and resuspended in 50 µL of plasmid mini-prep Solution I (25 mM Tris-pH 7.5, 10 mM EDTA, 50 mM glucose) containing 0.2 µg mL⁻¹ RNaseA and mixed in a microplate shaker for 10 min. Cells were lysed with 100 µL of Solution II (0.2 M NaOH, 1% SDS); then 75 µL of Solution III (3 M K acetate-pH 4.8) and 25 µL of Procipitate reagent (LigoChem, Fairfield, NJ) were added to precipitate proteins and chromosomal DNA. The supernatent was filtered through a 0.45-µm polyvinylidene fluoride (PVDF) membrane in 96-well format (Whatman Unifilter 350, Whatman, Clifton, NJ) and nucleic acids were precipitated with an equal volume of isopropanol. After centrifugation, the pellet was washed in 70% ethanol, air-dried, and resuspended in 10 µL of ultrapure distilled, deionized water. From 1 to 2 µL of each template preparation were sequenced using BigDye terminator cycle sequencing (Perkin-Elmer Applied Biosystems, Foster City, CA) using 8 pmol of M13-forward or M13-reverse primer in a 10-µL reaction. Standard cycle sequencing conditions were employed. Sequencing products were precipitated with an equal volume of isopropanol, washed with 70% ethanol, air-dried, and resuspended in 10 µL of ultrapure water. Electrophoretic separation of sequencing products was performed on an ABI PRISM 3700 DNA Analyzer 96-capillary automated sequencer (Perkin-Elmer Applied Biosystems).

Base calling was performed using Sequencing Analysis ver. 3.6 software (Perkin-Elmer Applied Biosystems). Assembly of double-stranded DNA sequence contigs from each clone, and identification of redundancy and overlaps between clones were performed using Sequencher 3.0 (Gene Codes, Ann Arbor, MI). Primers for the amplification of microsatellite loci were designed manually using the following criteria, if possible: (i) amplified product should be less than 200 bp in length for optimum resolution of polymorphic alleles; (ii) primers ideally should have a base composition of greater than 40% G+C; (iii) primers should not contain repetitive DNA. Primers selected by these criteria were evaluated further for melting temperature, internal structure, and propensity for primer-dimer formation using publicly accessible Worldwide Web resources (Sigma-Genosys, The Woodlands, TX).

Microsatellite Analysis

Genomic DNA was obtained from *G. hirsutum* L. cv. TM-1 and Tamcot SP37, and *G. barbadense* L. cv. Pima 3-79 and Pima S-7 by the method of Iqbal et al. (1997). Microsatellite loci were amplified by standard PCR methods (Bell and Ecker, 1994). A horizontal agarose gel electrophoresis system, yielding resolution of two base-pair polymorphisms, and a vertical acrylamide gel electrophoresis system, resolving

single base-pair polymorphisms, were used to evaluate polymorphism of microsatellite amplification products. In the agarose system, samples were electophoresed on a 20-cm-long horizontal gel (Owl Separation Systems, Portsmouth, NH) containing 2% agarose plus 2% Metaphor agarose (Cambrex, North Brunswick, NJ) at 5.3 V cm⁻¹ in 0.5X TBE buffer (45 mM Tris-Borate, 1 mM EDTA, pH 8) with buffer-chilling to 4°C. Gels were stained briefly with ethidium bromide prior to photodocumentation. In the acrylamide system, samples were electrophoresed (20 V cm⁻¹ in a 10-cm-high by 33-cm-wide by 1mm-thick vertical gel rig (CBS Scientific, Del Mar, CA) containing 6% polyacrylamide with 10% Vol./Vol. Spreadex NAB polymer (Elchrom Scientific, Cham, Switzerland) in 1X TAE buffer (45 mM Tris-Acetate, 1 mM EDTA, pH 8)), stained with ethidium bromide, then visualized. Additional experimental details on the agarose and acrylamide gel systems can be found at our cotton microsatellite resources Web site (http://plantbiol.tamu.edu/cottonSSRs/htm).

RESULTS

Several steps in the biotin capture protocol were modified to optimize the frequency of microsatellite repeats among captured genomic DNA fragments. Perhaps the most important single factor was the age of the streptavidin-coated paramagnetic beads. With beads only six months past the date of manufacture, stored at 4°C as per the manufacturer's recommendation (Promega), the yield of PCR product after the second amplification diminished greatly, and the final frequency of microsatellite-containing clones fell from close to 100% to between 20 and 30%. The relatively high quantity of T4 DNA ligase used in the adapter-ligation step (30 Weiss units) was also an important factor affecting the overall efficiency of the method.

A single capture reaction transformed into *E. coli* TOP10 cells (Invitrogen) yielded a total of >1 × 10⁴ colony-forming units, equivalent to >2 × 10⁵ colony forming units μ g⁻¹ of pCR4-TOPO vector. A random survey of primary colonies by PCR (using M13-forward and M13-reverse primers) indicated >98% of the transformants contained plasmids with detectable DNA inserts. The typical insert size was 500 ± 100 bp—a range well suited for complete sequencing using vector-specific primers. A collection of 588 colonies, picked at random from primary transformation plates, was inoculated into 96-well culture plates for high-Sequence analysis throughput sequencing. showed that virtually all of the inserts contained microsatellite repeat motifs matching one or more of the biotinylated oligonucleotides used in the selection process-although some motif lengths were quite small [e.g., (AGA)₂ or (GA)₃]. Due to the judicious selection of the restriction enzymes used in the initial fragmentation (HaeIII, RsaI, and DraI), none of the insert fragments were truncated within, or at the end of, a microsatellite repeat. In all cases, the unique sequences flanking both ends of the microsatellite repeat were obtained. This result is in contrast to that of the CM collection (Connell et al., 1998), in which genomic DNAs were mechanically fragmented using a high-pressure nebulizer, and a substantial portion of the clones were truncated within the microsatellite.

Of the 588 clones sequenced, 50 (8.5%) were redundant with other clones in the same collection. Internal redundancy was expected, since two PCR amplification steps were employed in the isolation process. Of the remaining 526 nonredundant clones, 309 were selected for further analysis on the basis of the following criteria: (i) the length of the microsatellite was five repeat units or greater; (ii) the unique 5' and 3' flanking sequences were both of suitable structure and composition for the design of efficient primers. Microsatellites with flanking sequences that were highly repetitive in nature and/or had a very high content of A+T nucleotides were eliminated.

These 309 new microsatellite loci (described in <u>Table 1, appendix</u>) were designated "JESPR" (after the names of the principle investigators, to reflect their collaborative development). Microsatellite loci containing a single repeat type made up 75% of the JESPR collection, including 98 (32%) with dinucleotide repeat types, 131 (42%) with trinucleotide repeat types, and 4 (1.3%) with hepta- and hexanucleotide repeat types. Of the microsatellites containing a single repeat type, 92% had "perfect" repeats, uninterrupted by nonrepeat nucleotides (Fig. 1). A further 25% of the collection was composed of "compound repeats" consisting of more than one repeat type at a single locus. Microsatellites with the AGA repeat type were the most abundant in our collection, followed by the GA type, with CA and ACA types making up the bulk of the remaining collection (Fig. 2).

Only two clones (both GA-repeats) were redundant with the more than 500 clones of the BNL microsatellites, and none were redundant with the 150 GA-repeat microsatellites of the CM collection. Thus, the overwhelming majority of sequences in our collection represented new microsatellite loci, and the total number of microsatellites present in the cotton genome appears to be quite large. Because two PCR amplification steps were employed in our biotin selection procedure, the level of internal redundancy within the JESPR collection is uninformative with regard to abundance of various microsatellite repeats in the genome.

To explore the potential utility of these new microsatellite loci in sequence-based genomic comparisons with the well-studied model plant *Arabidopsis thaliana* (L.) Hyenh, the JESPR sequences were subjected to basic local alignment search tool searches (Altschul et al., 1990) against *Arabidopsis* g e n o m i c s e q u e n c e d a t a b a s e s (http://www.Arabidopsis.org/blast/). A significant fraction of the loci (~13%) could be aligned with sequences in the *Arabidopsis* genome with basiclocal-alignment-search-tool probability scores of $1 \times e^{-20}$ or less - a level at which we confidently

Fig. 1. Examples of categories of microsatellite repeat structures identified in this study. Underlined nucleotides indicate the distinguishing features of imperfect and compound repeats, respectively.

Fig. 2. Distribution of repeat lengths and types among 307 loci in the JESPR collection. Loci with repeat lengths of less than five units were not included in this collection.

could assign each G. hirsutum L. clone a single "most similar" sequence in the Arabidopsis genome (Fig. 3A). A representative sequence alignment between Arabidopsis and cotton, showing the location of the microsatellite repeat, is shown in Fig. 3B. On the basis of basic local alignment search tool results, the annotation of the Arabidopsis sequence database, and the presence of open reading frames, nearly all of the sequences with this level of similarity were predicted to be either protein-encoding genes or pseudogenes in both cotton and Arabidopsis. Sequences adjacent to the JESPR53 microsatellite showed high similarity to the trnI and 16S ribosomal rRNAencoding genes from several higher plant chloroplast genomes. Similarly, sequences flanking the JESPR74 microsatellite showed high similarity to the chloroplast-encoded cytochromeb 550 alpha subunit gene. None of these sequences were present in current publicly accessible cotton expressed sequence databases tag (http://www.cugisearch.clemson.edu).

Primers were designed for the 307 selected microsatellite loci using the criteria described in

materials and methods. These primers (Table 1) had an average length of 20.4 nucleotides, with an average G+C content of 48% and melting temperature of 62°C. Predicted products ranged in size from 100 to 250 bp. An initial set of 152 primer-pairs was synthesized and tested in PCR using G. hirsutum L. cv. TM-1 genomic DNA as template. Of these, 123 (81%) yielded amplification products of approximately the expected size, on the basis of the sequence of the cloned microsatellite fragment. However, a minority of these amplified more than one locus, as we have observed previously in tetraploid cotton with several of the BNL and CM primers (Reddy and Pepper. unpublished data, 1999-2001). To determine the informativeness of the newly identified JESPR microsatellites in a G. hirsutum L. \times G. barbadense L., interspecific mapping population amplification products from G. hirsutum L. cv. TM-1 and G. barbadense L. cv. Pima 3-79 were compared. In these analyses, 69 (45.4%) of 152 primer-pairs tested yielded polymorphic amplified products. Seventeen of the 152 primer-pairs tested (11.2%) showed

Fig. 3. Sequence-based comparison of unique sequences flanking JESPR microsatellite loci with *Arabidopsis thaliana*. (A) Distribution of basic local alignment search tool probability scores from 307 JESPR sequences searched against the *Arabidopsis* genome database. (B) An alignment of *Gossypium hirsutum* L. clone JESPR238 with *Arabidopsis* EST clone AV441998, a putative cCDC2-like kinase ($p = 5.6 \pm e-21$, S = 370). The boxed GA dinucleotide corresponds to the location of the (GA)n microsatellite repeat in cotton.

intraspecific polymorphism between the *G. hirsutum* L. cv. TM⁻¹ and Tamcot SP37. However, 25.7% of the primers amplified loci that were polymorphic between upland *G. hirsutum* L. cv. HS46 and MARCABUCAG8US-1-88, which are not closely related on the basis of pedigree records (Calhoun et al., 1997) and have been used to produce intraspecific genetic maps in upland cotton (Shappley et al., 1998). Three of the 152 primers (2%) amplified loci with intraspecific polymorphism between *G. barbadense* L. cv. Pima 3-79 and Pima S-7, which are very closely related (Calhoun et al., 1997).

In total, 74 primer sets (48.7%) showed polymorphism among the tetraploid cotton cultivars tested (Table 1). A minority of polymorphisms (21%) was dominant in nature, with the recessive allele not producing an amplification product (Table 1, Fig. 4). Dominant and co-dominant polymorphisms were widely distributed among the repeat types (AGA, GA, CA, etc.) as shown in Fig. 4. Approximately 34% of the compound repeat loci were polymorphic, while ~54% of the simple repeat loci were polymorphic. Furthermore, 38% of the imperfect repeats were polymorphic, while 54% of the perfect repeats were polymorphic.

Fig. 4. Distribution of microsatellite polymorphism among categories and repeat types. COM indicates the values for compound repeats. Simple repeats identified by repeat type (GA, AGA, CA, etc.).

DISCUSSION

Microsatellite markers possess several important positive qualities for cotton genomic research. Among these is the broad spectrum of analytical detection methods that can be employed to detect polymorphisms. These methods include simple low-cost "low-technology" methods such as the Metaphor-agarose and Spreadex NABacrylamide gel systems described here, which utilize equipment and technical expertise that are ubiquitous in typical molecular biology laboratories. Such low-tech methods are particularly appropriate to researchers in developing countries where "hard currency" for major equipment and expensive reagents may be limiting, but labor costs are low. These methods can be performed at field stations and satellite experiment stations, without the need for major capital equipment or the logistical complications involved in shipping large numbers of samples for analysis. Consequently they are also appropriate for some marker-assisted selection projects involving analysis of only one or a few markers. However, the same microsatellite resources are also well-suited to more costly high-tech solutions, including detection of fluorescently labeled PCR products using automated and semiautomated DNA-sequencing instruments (Mitchell et al., 1997; Ponce et al., 1999), including highthroughput capillary electrophoresis devices (Baba, 1996). Future microsatellite detection methods probably will include matrix-assisted laser desorption ionization time-of-flight mass spectroscopy (Taranenko et al., 1999) and microarrays (Cheung and Nelson, 1998).

An improved biotin selection method, along with the declining cost of DNA sequencing, has enabled us to identify more than 307 new microsatellite loci for cotton. The method was optimized using A. thaliana (where microsatellite composition and abundance are largely known from genome sequencing efforts) and recently has been used in our laboratory to isolate microsatellite-containing clones from species in the genera Arabis (Brassicaceae), Caulanthus (Brassicaceae), Populus (Salicaceae), Silphium (Asteraceae), and Compsonurea (Myisticaceae) (A. Pepper, T. Mitchell-Olds, L. Norwood, C. Loopstra, J. Manhart, and J. Janovec, unpublished data, 2001). In each case, the results were similar - nearly all clones contained at least a small repeat motif, and from 50 to 100% of the clones picked at random contained microsatellite repeats of a sufficient length (>5 repeat units) that they might be polymorphic in natural populations (Innan et al., 1997).

One of the key elements of our method was the use of a complex mixture of biotinylated oligonucleotides in order to cast a wide net for capturing several repeat types. Each of the repeat oligonucleotides used in our procedure captured several microsatellite-containing fragments (Fig. 2). The distribution of repeat types in our collection does not strictly represent their relative abundance in the cotton genome, but reflects the relative efficiency with which they were captured. For example, the lowest frequency of isolation was observed with the b(TA)₃₀ oligo, which identified only two repeat loci. This finding was probably due to the low melting temperature of the $(TA)_{30}$ repeat structure $(T_{melt} = 51^{\circ}C)$ relative to the 60°C hybridization temperature employed during the capture. Interestingly, a few (CTTTCT)_n and (CTTTT)_n repeat units also were captured in our isolation procedure. The (CTTTCT)_n repeat was isolated in ~5% of the genomic DNA fragments captured from Caulanthus amplexicaulis (Brassicaceae) using a protocol that employed only the b(CA)₂₀, b(GA)₂₀, and b(AGA)₁₅ primers (L. Norwood and A. Pepper, unpublished data, 2001). We surmise that capture of this particular repeat motif probably was due to hybridization with the b(GA)₂₀ oligo. Similar mechanisms can be postulated for the capture of the GGA and GGT repeats, which also were not among our collection of biotinylated oligonucleotides. The mechanism of capture of (CTTTT)_n repeats remains obscure.

large percentage (~49%) of Α the microsatellite loci in the JESPR collection were polymorphic in tetraploid cottons. This value was highest in simple, perfect repeats (~54%), but other repeat structures also yielded informative polymorphisms at a significant frequency. Furthermore, ~46% of the microsatellite loci in the JESPR collection were informative for mapping in a G. hirsutum L. cv. TM-1 \times G. barbadense L. cv. Pima 3-79 interspecific mapping population targeted by the International Cotton Genome Initiative. A wide distribution of product sizes (~100-250 bp) will facilitate the assignment to appropriate "bins" for multiplex analysis (Mitchell et al., 1997; Ponce et al., 1999). A substantial fraction of loci (~11-26%) were polymorphic within upland cotton, and may be useful for intraspecific marker-assisted selection applications. Furthermore, in a set of 79 JESPRprimer-pairs tested on the diploid species Gossypium raimondii Ulbrich and G. arboreum L., all amplified a product of similar size to the expected product from tetraploid cotton, indicating that the primer binding sites may have been conserved in genomic DNA over several million years of evolution. These results imply that microsatellites will be useful-along with other DNA-based marker systems-in the comparative genetic mapping of tetraploid and diploid Gossypium species (Brubaker et al., 1999) and in tracking the introgression of agriculturally important traits from exotic diploid and tetraploid germplasm sources.

A significant proportion (>13%) of our microsatellite loci could be directly linked, via substantial sequence similarity, to sequences in the fully sequenced Arabidopsis genome. Both traditional taxonomic treatments and modern molecular phylogenetics (Soltis et al., 1999) indicate a close evolutionary proximity of (Malvaceae) Α. Gossypium to thaliana (Brassicaceae). When these microsatellites are mapped in cotton, they will contribute to the detection and delineation of regions of chromosomal colinearity ("synteny") between Arabidopsis and the A and D genomes of tetraploid Gossypium species and, in so doing, potentially accelerate gene discovery efforts based on positional cloning and candidate gene approaches.

Given the low level of redundancy between the JESPR, CM, and BNL marker sets, and the comparatively large 1C value of G. hirsutum L. $(\sim 2 \times 10^9 \text{ bp [Arumuganathan and Earle, 1991]}),$ the number of microsatellite repeat structures present in the cotton genomes is probably vast. The development of a high-density molecular marker map for tetraploid cotton, similar to those used for genetic mapping in humans, mouse, and zebrafish, probably will require the identification of more than 1000 polymorphic loci. A map developed from such a marker set would have an average density of markers of less than 5 cM, and probably give coverage of all chromosome arms. In our present collection, we have more than $1 \times$ 10⁴ additional, uncharacterized clones. Although some of these clones will be redundant with those already in hand, further development of this resource probably will satisfy the needs of the

cotton research community for a sizable collection of polymorphic microsatellite markers. If required, additional biotin selections could be performed at a lower hybridization temperature to identify (T)_n, (AT)_n, and other A+T-rich repeat loci that are also abundant in many plant species. As new markers in our collection are developed, this information will be disseminated rapidly via the Worldwide Web through CottonDB (http://algodon.tamu.edu/cottondb.html) and through Web resources under development at Mississippi State University and at Texas A & M University (http://plantbiol.tamu.edu/ cottonSSRs/htm).

ACKNOWLEDGMENT

This work was supported by USDA-NRICGP (Plant Genome) grant 97-35300-4585 (to A.E.P and K.M.E.) and the USDA-ARS. I.A. was supported by a President's Fellowship from the government of the Republic of Uzbekistan. The authors thank Geoff Waldbieser and Mary Duke of the USDA-ARS Mid-South Area Genomics Laboratory at Stoneville, MS, for technical assistance with template preparation and sequencing; and Robert Creelman, James Connell, and Avutu S. Reddy for helpful discussions on microsatellite isolation.

REFERENCES

- Akagi, H., Y. Yokozeki, A. Inagaki, and T. Fujimura. 1996. Microsatellite DNA markers for rice chromosomes. Theor. Appl. Genet. 93:1071–1077.
- Akkaya, M.S., A.A. Bhagwat, and P.B. Cregan. 1992. Length polymorphisms of simple sequence repeat DNA in soybean genetics. Genetics 132:1131–1139.
- Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–410.
- Arumuganathan, K., and E.D. Earle. 1991. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9:208–218.
- Baba, Y. 1996. Analysis of disease-causing genes and DNAbased drugs by capillary electrophoresis: Towards DNA diagnosis and gene therapy for human diseases. J. Chromatogr. 687:271–302.

- Bell, C.J., and J.R. Ecker. 1994. Assignment of 30 microsatellite loci to the linkage map of *Arabidopsis*. Genomics 19:137–144.
- Brubaker, C.L., A.H. Paterson, and J.F. Wendel. 1999. Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome 42:184–203.
- Calhoun, D.S., D.T. Bowman, and O.L. May. 1997. Pedigrees of upland and pima cotton cultivars released between 1970 and 1995. Bull. 1069. Mississippi Agric. For. Exp. Stn.
- Chen, X., S. Temnykh, Y. Xu, Y.G. Cho, and S.R. McCouch. 1997. Development of a microsatellite framework map providing genome-wide coverage in rice (*Oryza sativa* L.). Theor. Appl. Genet. 95:553–567.
- Cheung, V.G., and S.F. Nelson. 1998. Genomic mismatch scanning identifies human genomic DNA shared identical by descent. Genomics 47:1–6.
- Condit, R., and S.P. Hubbell. 1991. Abundance and DNA sequence of two-base repeat regions in tropical tree genomics. Genome 34:66–71.
- Connell, J.P., S. Pammi, M.J. Iqbal, T. Huizinga, and A.S. Reddy. 1998. A high through-put procedure for capturing microsatellites from complex plant genomes. Plant Mol. Biol. 16:341–349.
- Dib, C., S. Faure, C. Fizames, D. Samson, N. Drouot, A. Vignal, P. Millasseau, S. Marc, J. Hazan, E. Seboun, M. Lathrop, G. Gyapay, J. Morissette, and J. Weissenbach. 1996. A comprehensive genetic map of the human genome based on 5264 microsatellites. Nature 380:152–154.
- Dietrich, W.F., J. Miller, R. Steen, M.A. Merchant, D. Damronboles, Z. Husain, R. Dredge, M.J. Daly, K.A. Ingalls, T.J. O'Connor, C.A. Evans, M.M. DeAngeilis, D.M Levinson, L.L. Kruglyak, N. Goodman, N.G. Copeland, N.A. Jenkins, T.L. Hawkins, L. Stein, D.C. Page, and E.S. Lander. 1996. A comprehensive genetic map of the mouse genome. Nature 380:149–152.
- Edward, K., J. Barker, A. Daly, C. Jones, and A. Karp. 1996. Microsatellite libraries enriched for several microsatellite sequences in plants. Biotechniques 20:758–760.
- Fredholm, M., and A.K. Wintero. 1995. Variation of short tandem repeats within and between species belonging to the Canidae family. Mamm. Genome 6:11–18.
- Innan, H., R. Terauchi, and T.N. Miyashita. 1997. Microsatellite polymorphism in natural populations of the wild plant *Arabidopsis thaliana*. Genetics 146:1441–1452.

- Iqbal, M.J., N. Aziz, N.A. Saeed, and Y. Zafar. 1997. Genetic diversity evaluation of some elite cotton varieties by RAPD analysis. Theor. Appl. Genet. 94:139–144.
- Karagyozov, L., I.D. Kalcheva, and V.M. Chapman. 1993. Construction of random small-insert genomic libraries highly enriched for simple sequence repeats. Nucl. Acids Res. 21:3911–3912.
- Kijas, J.M.H., J.C.S. Fowler, C.A. Garbett, and M.R. Thomas. 1994. Enrichment of microsatellites from the citrus genome using biotinylated oligonulectide sequences bound to streptavidin-coated magnetic particles. Biotechniques 16:657–662.
- Knapik, E.W., A. Goodman, M. Ekker, M. Chevrette, J. Delgado, S. Neuhauss, N. Shimoda, W. Driever, M.C. Fishman, and H.J. Jacob. 1998. A microsatellite genetic linkage map for zebrafish (*Danio rerio*). Nature Genet. 18:338–343.
- Konieczny, A., and F. Ausubel. 1993. A procedure for quick mapping of *Arabidopsis* mutants using ecotype specific markers. Plant J. 4:403–410.
- Lench, N.J., A. Norris, A. Bailey, A. Booth, and A.F. Markham. 1996. Vectorette PCR isolation of microsatellite repeat sequences using anchored dinucleotide primers. Nucl. Acids Res. 24:2190–2191.
- Liu, S., S. Saha, D. Stelly, B. Burr, and R.G. Cantrell. 2000. Chromosomal assignment of microsatellite loci in cotton. J. Hered. 91:326–332.
- McCouch, S.R., X. Chen, O. Panaud, S. Temnykh, Y. Xu, Y.G. Cho, N. Huang, T. Ishii, and M. Blair. 1997. Microsatellite marker development, mapping applications in rice genetics and breeding. Plant Mol. Biol. 35:89–99.
- Mitchell, S.E., S. Kresovich, C.A. Jester, C.J. Hernandez, and A.K. Szewc-McFadden. 1997. Application of multiplex PCR and fluorescence-based semi-automated allele sizing technology for genotyping plant genetic resources. Crop Sci. 37:617–624.
- Morgante, M., and A.M. Oliver. 1993. PCR-amplified microsatellite markers in plant genetics. Plant J. 3:175–182.
- Plaschke J., M.W. Ganal, and M.S. Roder. 1995. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor. Appl. Genet. 91:1001–1007.
- Ponce, M.R., P. Robles, and J.L. Micol. 1999. Highthroughput genetic mapping in *Arabidopsis thaliana*. Mol. Gen. Genet. 261:408–415.

- Prochazka, M. 1996. Microsatellite hybrid capture technique for simultaneous isolation of various STR markers. Genome Res. 6:646–649.
- Shappley, Z.W., J.N. Jenkins, W.R. Meredith, and J.C. McCarty Jr. 1998. An RFLP linkage map of Upland cotton, *Gossypium hirsutum* L. Theor. Appl. Genet. 97:756–761.
- Shimoda, N., E.W. Knapik, J. Ziniti, C. Sim, E. Yamada, S. Kaplan, D. Jackson, F. de Sauvage, H. Jacob, and M.C. Fishman. 1999. Zebrafish genetic map with 2000 microsatellite markers. Genomics 58:219–232.
- Soltis, P.S., D.E. Soltis, and M.W. Chase. 1999. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402:402–404.
- Steinkellner, H., C. Lexer, E. Turetschek, and J. Gloessl. 1997. Conservation of (GA)n microsatellite loci between *Quercus* species. Mol. Ecol. 6:1189–1194.
- Tanksley, S.D., and S.R. McCouch. 1997. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 277:1063–1066.
- Taranenko, N.I., N.T. Potter, S.L. Allman, V.V. Golovlev, and C.H. Chen. 1999. Detection of trinucleotide expansion in neurodegenerative disease by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Genet. Anal. Biomol. Eng. 15:25–31.
- Vos, P., R. Hogersn, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Freijters, J. Pot, J. Peleman, M. Kuiper, and M. Zabeau. 1995. AFLP: A new technique for DNA fingerprinting. Nucl. Acids Res. 23:4407–4414.
- Westman, A.L., and S. Kresovich. 1998. The potential for cross-taxa simple-sequence repeat (SSR) amplification between *Arabidopsis thaliana* L. and crop brassicas. Theor. Appl. Genet. 96:272–281.
- Wu, K., and S.D. Tanksley. 1993. Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol. Gen. Genet. 241:225–235.
- Zabeau, M., and P. Vos. 1993. Selective restriction fragment amplification: A general method for DNA fingerprinting. European Patent Application 92 402 629.7. Publ. EP 0 534 858.
- Zardoya, R., D.M. Vollmer, C. Craddock, J.T. Streelman, S. Karl, and A. Meyer. 1996. Evolutionary conservation of microsatellite flanking regions and their use in resolving the phylogeny of cichlid fishes (Pisces: Perciformes). Proc. R. Soc. Lond. Ser. B 263:1589–1598.

Appendix-1

Tabl	e 1.	Summary	of	JESPR	microsatelli	ite	loci.
------	------	---------	----	-------	--------------	-----	-------

	.		D	GenBank
Name	Polym.†	Primer 57–37	Repeat motif	accession number‡
JESPR-1-F	м	CCCTCTTCCTCTCACCCACC	(GAA) ₁₈	AF351243
JESPR-1-R		GCTTGTGGTTTCTAGACACACC	()	
IESPR-2-E		ATCACCGGCATCATCATCAT	(GTT)⊧	ΔF351244
			(611)	AI 331244
			(0)	A F254245
JESPR-3-F			(GAA)»	AF351245
JESPR-3-R		GGAIIGGACAACCAIICIIC	(077)	1 505 40 40
JESPR-4-F		GACAIGIGGCAIAAAIGACG	(CII)6	AF351246
JESPR-4-R		GGCAGAGACACTTTTAACTAGAG		
JESPR-5-F		GTCTCCTTCCCCTTCCTCTTCTTC	(GTT)₀	AF351247
JESPR-5-R		CAACAACCCATGACGACGAC		
JESPR-6-F	NA	CTAAACCCTAAACACAATATCTCC	(CTT)15	AF351248
JESPR-6-R		CATTATAAGGTCCCCAATGTC		
JESPR-7-F	Р	GCTGACGGAAGTGACAGGACCCT	(GAA) ₁₄	AF351249
JESPR-7-R		GTCTCCTTCCCCTTCCTCTTCTTC		
JESPR-8-F		GGCATCTTACGGTGGAAATGAC	(GAA) ₁₂	AF351250
JESPR-8-R		GGTTAGGTTTGGGGTGTTACATAC		
JESPR-9-F	NA	GTTGACGAAGAGGCAAAAGGGTC	(GAA) ₁₃	AF351251
IESPR-9-R	NA	GGCTTCTCTTGCTTAGATCTGGAC		A1001201
	D	CAGGCAATGTCGGATGTGGGC		A E351252
	F		(GAA)20	AF331232
JESPR-10-R			(0)	4 5254252
JESPR-11-F			(GAA) ¹⁰	AF351253
JESPR-11-R		CCIAIGIACAIAIGCICIIC	()	
JESPR-12-F		CCTAGACATCTGATTTAGCCAC		AF351254
JESPR-12-R		GAAGAAGAAGAATCCGACAG		
JESPR-13-F	М	GCTCTCAAATTGGCCTGTGT	(CTT) ₁₉	AF351255
JESPR-13-R		GGTGGAGGCATTCCTGCTAAC		
JESPR-14-F	Р	GGGAGGGGGTGAATAAACGGTG	(CTT)17	AF351256
JESPR-14-R		GGTCAGGTAAACTTGCCATAGTGGG		
JESPR-15-F		CTTCTCTTGCTTAGATCTGGAC	(GAA) ⁷	AF351257
JESPR-15-R		GCGAGTACTAGTAATGACTGTC		
JESPR-16-F		GATGTGAGTATTTGGCACTTTGAC	(AT)₄TGA(AT)₃	AF351258
JESPR-16-R		GCTATCTATATCCGACTCAGCCCG		
JESPR-17-F		CATGTCGTAGTGGTAACTGC	(GAT)₀	AF351259
JESPR-17-R		GCCTTGTTACTTAACTAATAGTCC	()	
IFSPR-18-F		CGGCTTCTCTTGCTTAGATCTGG		AE351260
IESPD-18-D		CCTCTAGATTGCCCTCCTTGTGC	(611)	AI 331200
				A E251261
JESPR-19-F			(GAA)20	AF351201
JESPR-19-R				1 5054000
JESPR-20-F		GGCTTCTCTTGCTTAGATCTGG	(CTT)»	AF351262
JESPR-20-R	_	CGGTACATGGCTCGAGAGAG		
JESPR-21-F	Р	GAGGGGGTGAATAAACGGTGAGG	(GAA)₁₅	AF351263
JESPR-21-R		CGGCTTCTCTTGCTTAGATCTGGAC		
JESPR-22-F		GGCTAATGGTGGTTGTGGATGC	(GAA) ₁₂	AF351264
JESPR-22-R		CCCATGAAGATTTTTCCAGGGGAG		
JESPR-23-F		GACTATGGCTTAAGGTTCAG	(CTT)₀	AF351265
JESPR-23-R		CCCATTAATGTTAATGGCAAC		
JESPR-24-F		CGGCTTCTCTTGCTTAGATCTGGAC	(CTT) ₂ (CTCTT) ₂ (CTT) ₂	AF351266
JESPR-24-R		GCTGACGGAAGTGACAGGACC		
JESPR-25-F	м	GCCCTATCCACGTTGCTGTCG		AF351267
IESPR-25-P			(0,0,0,0	/
		COTCACATCACTCTTC		AE351268
				AI 331200
JEOFR-20-R				45254260
JESPK-2/-F	NA		(CT)₀(CA)₀(CGCAGA)₄	AF351269
JESPR-27-R		GGAACTIACCIGGAATTTAGTG		
JESPR-28-F		CAACAICAACCICGTGAACCAAT	(CAA)6	AF351270
JESPR-28-R		GTGAGGCCCCTTCTATTATTAGAC		

†Polymorphism observed in tetraploid cottons. P, polymorphic; M, monomorphic; NA, not amplified. ‡GenBank submissions were trimmed at the first ambiguous nucleotide (N), and may not contain both primer binding sites.

Name	Polym.†	Primer 5'–3'	Repeat motif	GenBank accession number‡
JESPR-29-F JESPR-29-R		CACCGTTTCCAAGTAAGATT GGTTAATCTTAGTTGAGGTC	(CTT)₀	AF351271
JESPR-30-F		CAAGCTAAGCCACTTGTATTACC	(GAA)₅A(GAA)₃	AF351272
JESPR-31-F		CCAGTTAACTTGCCACGGTG	(GGA)₅	AF351273
JESPR-31R JESPR-33-F	м	GGATTTGCTTCCTAGTTCCCACAC GACAGATTGTAATCAATCCAACACG	(GTT)₀	AF351274
JESPR-34-F		TGGTACCGGGGGATTCAGTGCGGCCAC	(CTT) ₁₁	AF351275
JESPR-35-F		GGTTCAGTTTCCTTTCAGCTCT	(CTT)₀	AF351276
JESPR-36-F	NA	GGACTAAACTTGCCACGTTGG	(CTT) ₂₀	AF351277
JESPR-30-R JESPR-37-F		GATCTGGACTAACTGTAGGGGTC	(CTT) ₁₄	AF351278
JESPR-37-R JESPR-38-F		GAATCTTACAGTGGAGCAAGG	(GAA) ₁₂	AF351279
JESPR-38-R JESPR-39-F		GGG AAA GGC TAA TGT GGT TG GGTTCAGTTTCCTTTCAGCTCT	(CTT) ₉ (CCTT) ₃	AF351280
JESPR-39-R JESPR-40-F		TTGGGAGGAAGGAAGGAAGGAAG CTTCTCTTGCTTAGATCTGGACT	(CTT)₀	AF351281
JESPR-40-R JESPR-41-F		GTGTGCTTATTATATGTGAATGTAG GACCATTGGGAATTGCTGATACG	(CTT)₀	AF351282
JESPR-41-R JESPR-42-F	М	GGGTAATCGACATAGGTAACGGG CGTTGCCGTCTTCGACTCCTT	(CTT) ₁₂	AF352073
JESPR-42-R JESPR-43-F	М	GTGGGTGGCTAATATGTAGTAGTCG CGGCTTACAACAACAACAAC	(CAA) ₁₅	AF351283
JESPR-43-R JESPR-44-F		GCTTCTCTTGCTTAGATCTGGAC CTCTTGCTTAGATCTGGACTAAC	(GTT)₃	AF351284
JESPR-44-R JESPR-45-F		CCTGTACCAGTAGTAATAGTAGC GAAACTCGATCCCTCAAGATATG	(GTT)₀	AF351285
JESPR-45-R JESPR-46-F	м	ATGAAATGAAAGAAAGAAGGGAGG GCTGTTGACTAACACATAAATAC	(GAA) ₉	AF351286
JESPR-46-R	M	ATTGTAAATGTTACTGTATGATGCC GGG GTG AGG GAT TGG ACA ACA	(CTT) ₁₀	AF351287
JESPR-47-R		CCC CCT AAC TGG CCA GGT AG	(GA)₅	AF351288
JESPR-49-R			(GA):	AF351200
JESPR-50-P		GGTGACATCAGTGTTGTTC	(CAA)₅	AF331269
JESPR-51-F JESPR-51-R	M	CATAACATCTAGGTCAGGTTTGGGG	(GAA)11	AF351290
JESPR-52-F JESPR-52-R		GCCGTACAATCACAGATTGGGAC GCGCTTCTCATTGAGTCATCCTG	(GAA) ¹²	AF351291
JESPR-53-F JESPR-53-R		GCCAATGGGACTATATACCGGTG CCATGTCCCACGCCAGATTG	(GAA)₀ (Chloroplast)	AF351292
JESPR-54-F JESPR-54-R		CTCACCTGAATCGCCCCATCTATC GCTTAATTTGGCTGGGTCTCCAC	(GAA)ۥ(Y)،GAAGA(GAA)₄	AF351293
JESPR-55-F JESPR-55-R	Р	GTTCGAGGAGGATTGAGGTAGAGGA CCCCTTCTCTTGCTTAGATCTGGAC	(CT)6A(CA)11	AF351294
JESPR-56-F JESPR-56-R	Р	CCAGTTAGCACCAATTTAGG CCACAATAACACACTGGAATC	(GAA)23	AF351295
JESPR-57-F		CGCCCTTCTCTTGCTTAGATCTGG CTCAAGAGCAAAAGGAACTTAACTCG	(TA) ₆	AF351296
JESPR-58-F	Р	CCGCCCTTCTCTTGCTTAGATCCGG	(CTT) ₁₀	AF351297
JESPR-59-F	м	CGCCCTTCTCTTGCTTAGATCTGGA	(CTTTT)₀	AF351298
JESPR-60-F	м	CGCCCTTCTCTTGCTTAGATCTGG	(AT)₄(GT)₄GA(GT)₁₄	AF351299
JESPR-60-R JESPR-61-F		CGCCCTTCTCTTGCTTAGATCTGGA	(CA)10	AF351300

Name	Polvm.†	Primer 5'–3'	Repeat motif	GenBank accession number±
JESPR-61-R		CACATCCTCCTCCCTACTCCCTCC		
JESPR-62-F	Р	GAATTGAGTGGAAAAGGGGGG	(GA)14(Y)4(GT)11	AF351301
JESPR-62-R		CCTTCTCTTGCTTAGATCTGG		
JESPR-63-F		CATCTTGGGTATTTTTTGAGTG	GAAA(GAA)₅AAA(GAA)₅	AF351302
JESPR-63-R	_	GACTACCAAATGCACCATCTC		
JESPR-64-F	Р	CGCCCTTCTCTTGCTTAGATCTGGA	(CCCACA)₅	AF351303
JESPR-64-R	_	GCAATTGAGGGGTGGGGTTGTCTG		
JESPR-65-F	Р	CCACCCAATTTAAGAAGAAATTG	(GAA) ₂₅	AF351304
JESPR-65-R	_	GGTTAGTTGTATTAGGGTCGTTG	/- · · ·	
JESPR-66-F	Р	CTGGACTAACTATTTGGTATCCCTC	(GA)20	AF351305
JESPR-66-R		GATCIGGACIACCGCIAAICAC		
JESPR-67-F	Р	GTAAAGAGCAACCTACACCTACCT	(GAA)31	AF351306
JESPR-67-R		CCAAGATAGTTCATACTTCCCTC	()	
JESPR-68-F		GATATTTATTGTGTTTAACAGCAG	GAAA(GAA)₃AAAGAA	AF351307
JESPR-68-R		TACTCTTATCGATGTCCTTTTCA		
JESPR-69-F	м	CGCCCTTCTCTTGCTTAGATCTGG	(CA) ₁₅	AF351308
JESPR-69-R		AAACTTTGCCGTTGATGGAGACCC		
JESPR-70-F	Р	CTGGACTAAAAGGAAGATGAGAG	(GA) ₁₇	AF351309
JESPR-70-R		GAATACAGGTTCAAAGTTGATA		
JESPR-71-F		CGCCCTTCTCTTGCTTAGATCTGG	(GA)11	AF351310
JESPR-71-R		GCACCCTGCTCCAATCCTCTTTC		
JESPR-72-F	Р	CGCCCTTCTCTTGCTTAGATCTGG	(CTT) ₁₀	AF351311
JESPR-72-R		GGGCAAGCTGACGATGAGGAATG		
JESPR-73-F	Р	CCACCGAAATCGATAGAGAGCAAT	(GA)₅G(GA)₂	AF351312
JESPR-73-R		CACTGTCCGACTAGGCCAATAC		
JESPR-74-F		CCCTTCTCTTGCTTAGATCTGGAC	(CA) ₁₂	AF351313
JESPR-74-R		GCATTATGCTTGCTAGTTCCCTGC	(Chloroplast)	
JESPR-75-F	Р	CTTCTCACGTTACCATTGATTCTTC	(CT)₀	AF351314
JESPR-75-R		GGCTGTTCACGGACTAGCTGTA		
JESPR-76-F	NA	CCCTTCTCTTGCTTAGATCTGGAC	(GT)₅(Y)7(GA)20	AF351315
JESPR-76-R		CAGTTGCTTCCAATGCAGCTACAG		
JESPR-77-F		TCTCTTGCTTAGATCTGGACT	(GA)11	AF351316
JESPR-//-R				4 5054047
JESPR-/8-F			(GA) ₁₄	AF351317
JESPR-/8-R				A 5254240
JESPR-/9-F			(661)7	AF351318
		CGCAGIGICIGAAICGCCIIC		A E 2 E 4 2 4 0
			(CTT)	AF301019
JESPR-81-F		GTGGA ATGGTTGATA AGC ATGTTG	(AT)-	AE351320
IESPR-81-P		GEATATAACACCAGGCACAAATAC	(~)5	AI 331320
JESPR-82-F		GCAAAACATGGAATTTAAGTC		AF351321
JESPR-82-R		CTAGATATTAGTTCCCGAATCAC		
JESPR-83-F		CATAGGCAAGCCTTGTAGCAATC	(CT) ₆	AF351322
JESPR-83-R		CCTCTTCTTTCACTACCACCTGC	(01)*	
JESPR-84-F	Р	GACTCCCGGAGGCAATCAGAG	(CTT) ₂₀	AF351323
JESPR-84-R		CCAGGGCTCATACTATCGCTGC	()	
JESPR-85-F	Р	CCACCCAAATTTTTCATGGAGAG	(GA) ₁₄	AF351324
JESPR-85-R		CCTTCCTCATGTATGACATTGATGG		
JESPR-86-F	М	GGAGGAAGTTAGGAGCATGTCTCAG	(GT)₂TGG(GT)₄	AF351325
JESPR-86-R		ACAGGGTAGTCACGTAACAACTGC		
JESPR-87-F	Р	GCCCTTCTCTTGCTTAGATCTGGA	(GAA)22	AF351326
JESPR-87-R		CAAAACGGTCGTAGCTAGGGTATG		
JESPR-88-F		GTCAGCACAGTGAGGGTAAGAG	(GA)₄GG(GA)₂(GAA)₂(GA)₂	AF351327
JESPR-88-R		GAATACTCCCTCTTCCCTCG		
JESPR-89-F	Р	CCCCAACCCACGAACATTCCA	(GAA)10(GAAAAA)2(GAA)3	AF351328
JESPR-89-R		GGTGTTAACTGGATTGCTGACGTGG		
JESPR-90-F		CATGGAGTTTCAATGGCGAAGAATC	(CTT) ⁷	AF351329
JESPR-90-R		GGAACCGCTGATGTGGCTAGTTAAC	(- • • •)	
JESPR-91-F		GGGGTGTTGAGTAGAATGGTAG	(GAA)₀	AF351330
JESPR-91-R		CGACATTIGCGATAAGTTGTG		

Name	Polym.†	Primer 5'–3'	Repeat motif	GenBank accession number‡
JESPR-92-F	Р	GGGACCTCTATTGAATAGCTGGAG	(GAA) ₂₃	AF351331
JESPR-93-F		GCTTAGATCTGGACTACCCGTTG	(GAA)₅	AF351332
JESPR-94-F		GCAAGACCACCACCACGACC	(GAA)₅	AF351333
JESPR-94-R JESPR-95-F		GCTTTTCTCGTAGACGTATG	(CTT) ₉	AF351334
JESPR-95-R JESPR-96-F		CATCAGGTTCGAGATTGTCCCTCTG	(GT)₅	AF351335
JESPR-90-R	Р	CTTCTCTTGCTTAGATCTGGAC	(CT) ₁₁	AF351336
JESPR-97-R		CTTGATGAGGACCTATTTCCC	(GA)₃G(GA)2A(GA)₃	AF351337
JESPR-98-R JESPR-99-F		GCTATGCAGGCTCTGGGAAGGCTC	(GT)10	AF351338
JESPR-99-R JESPR-100-F		CACATGGTTGACCGTACCGCCTCG	(CA)₀	AF351339
JESPR-100-R JESPR-101-F	Р	CCAAGTCCTGGAGTGCTCCGGTG	(TA)₃(GT)₁₅	AF351340
JESPR-101-R JESPR-102-F	Р	CTTGTGAAGTCCTTTAGGGC	(CTT)₅TT(CTT)₅	AF351341
JESPR-102-R JESPR-103-F		CTATGAAACTCAAAGCCAAACTC	(GAA) ⁷	AF351342
JESPR-103-R JESPR-104-F		GATGTTTAAGAATAACTATG	(GA) ₁₀	AF351343
JESPR-104-R JESPR-105-F	м	GGAAATTTTGATACACATCCAC GGAAGACCAACCAAGTCAAG	(TA) ₆ (GT) ₁₉	AF351344
JESPR-105-R JESPR-106-F	м	CTAACAACTCTAACCTCTAACTG	(CAA) ₁₀	AF351345
JESPR-106-R JESPR-107-F		GGACIAAAAGIIGIIAIIIG GACAATCCAGGCAGTCAGAG	(CA) ₁₁	AF351346
JESPR-107-R JESPR-108-F		CATACTAATTAGCCATTCTCACCC	(CTT) ₃ (CT) ₃	AF351347
JESPR-100-R JESPR-109-F		GATTACAGTAGTCGAACGAGC	(GAA) ⁷	AF352074
JESPR-109-R JESPR-110-F	Р	GGCGAAGAGCTACCTGTGAATGGC	(GA) ₁₆	AF351348
JESPR-110-R JESPR-111-F		CTCTTGCTTAGATCTGGACTACC	(GAA)₂GA(Y)₄GAAGAAA	AF351349
JESPR-111-R JESPR-112-F	NA	CTTCTCTTGCTTAGATCTGGAC	(CA)₀(TA)₅	AF351350
JESPR-112-R JESPR-113-F	м	CCCCCGAAGCCTTCAAGTAAGTTAC	(GAA) ₁₁	AF351351
JESPR-113-R JESPR-114-F	Р	GATTTAAGGTCTTTGATCCG	(GT) ₁₂	AF351352
JESPR-115-F	м	GAAACATGATTGTATGGTAATG	(TA)₅T(GT)10	AF351353
JESPR-116-F		GGTCACATTCAAACTAAATGTTCC	(GAA)₂GAG(GAA)₂GAG	AF351354
JESPR-117-F		CAAACATCTGGCTTTTTAACTC	(GA)2CA(GA)2CAGA	AF351355
JESPR-118-F		CTTTTTCTCTTTTCAACAGCTG	(CT) ₁₂	AF351356
JESPR-119-F		CTCAGGGAACTATTTGTAGTAGC	(CA) ₁₀	AF351357
JESPR-120-F		GTAACCGAATACCCCTCAACTTAAG	(CT)₀	AF351358
JESPR-121-F		CCTCAGATCAATTAACTATGATTC	(CA) ₁₂	AF351359
JESPR-122-F JESPR-122-R		GCTGCTGGTTTTACTTGTTGG CTATGGTGGAGGAGGAGCAACAAC	(CAT)₅	AF351360

Name	Polym.†	Primer 5'–3'	Repeat motif	GenBank accession number‡
JESPR-123-F JESPR-123-R		CTCTTGCTTAGATCTGGACTACC CTAAAACTACAGTCGAAAGGGG	(GT) ₉	AF351361
JESPR-124-F		GGATATCGCTCTCCCTCT	(GT) ₉	AF351362
JESPR-125-F		CATTGTGATCAACCCCACCAAC	(CA) ₁₁	AF351363
JESPR-125-R JESPR-126-F		GCATGTGGGGGATGGTCACATGC	(CA) ₆	AF351364
JESPR-120-R JESPR-127-F	Р	GATTTGGGTAACATTGGCTC	(GA)₀AA(GA)₅	AF351365
JESPR-128-F		CTGAAAAATCTGCATTTCCG	(GT) ₁₀	AF351366
JESPR-129-F	м	CCTAACCTTTATCATCATGATC	(CA)26(TA)₅	AF351367
JESPR-129-R		GCCCAATTACAACACTTTCCAAC	(CA)₅	AF351368
JESPR-130-R JESPR-131-F	м	GGCACTACCGGTTTGTCTTC	(CT)₃CC(CT)ァ(CA)₄	AF351369
JESPR-131-R JESPR-132-F		GATCGAACAGATGGGTTAGTG	стсттстттстттт	AF351370
JESPR-132-R JESPR-133-F		CAAGGATAAGGTTGAAGCTTC	(GAA)6	AF351371
JESPR-133-R JESPR-134-F		GTCAGAGTCTTCGGGTTGTC	(CTTTT)(CTT)₀(CTTTT)	AF351372
JESPR-134-R JESPR-135-F	Р	CAAAACCATCATCACTCGGTG	(CT) ₁₁	AF351373
JESPR-135-R JESPR-136-F		GCAGGAAGCCCACTAACAGAAAAG	(TAC)	AF351374
JESPR-130-R JESPR-137-F	м	CTTCTCTTGCTTAGATCTGGAC	(CA) ₉	AF351375
JESPR-137-R JESPR-138-F		GATCAACTATCAGTCCAATTGG	(GT)₁₀	AF351376
JESPR-130-R JESPR-139-F	м	CCTTCTCTTGCTTAGATCTGG	(CTT)₁₀	AF351377
JESPR-139-R JESPR-140-F		CTTCTCTTGCTTAGATCTGGAC	(CA)₄T(CA)₃	AF351378
JESPR-140-R JESPR-141-F	м	CTCAAGCTCTTCCCCCTTC	(CTTTT)6	AF351379
JESPR-141-R JESPR-142-F	м	CTCTTGCTTAGACAAGGAAGGTGG CTCTTGCTTAGATCTGGACTAAC	(CTT)₁₀	AF351380
JESPR-142-R JESPR-143-F		CCTTCTCTTGCTTAGATCTGG	(GAAAA)₄	AF351381
JESPR-143-R JESPR-144-F	NA	CTCTTATTTGTGTAACTACTG	(GTGTAT) ₁₄	AF351382
JESPR-144-R JESPR-145-F	М	CATACACATACACATACACATACAC	(CTT) ₉	AF351383
JESPR-145-R JESPR-146-F		CGCCCTTCTCTTGCTTAGATCTGGA	(CA) ⁷	AF351384
JESPR-146-R JESPR-147-F		GCTTAGATCTGGACTACCGAATCCT	(GAA) ⁷	AF351385
JESPR-147-R JESPR-148-F	Р	GCTTCTCTTGCTTAGATCTGG	(CTT) ₁₁	AF351386
JESPR-148-R JESPR-149-F		GTCGCTTTGTAAGTGAATGAG GTTCTTAAGTGAGGATTGGACG	CTTCT(CTT) ₆ CTTTTTCT	AF351387
JESPR-149-R JESPR-150-F	м	GCTTAGATCTGGACTAACATACG	(GAA)₃	AF351388
JESPR-150-R JESPR-151-F	Р	GAIAATTICAIGTAAAATCCCTG CTGGACTAAAAACCTTAACTGG	(GAA)₃(Y)4(GAA)₁₀	AF351389
JESPR-151-R JESPR-152-F	Р	GATGCALICIAACTCAATCACG GATGCACCAGATCCTTTTATTAG	(GAA)50	AF351390
JESPR-152-R JESPR-153-F	Р	GG FACATCGGAATCACAGTG GATTACCTTCATAGGCCACTG	(CTA) ₁₈	AF351391
JESPR-153-R		GAAAACATGAGCATCCTGTG		

Name	Polym.†	Primer 5'–3'	Repeat motif	GenBank accession number‡
JESPR-154-F JESPR-154-R		GTTCCCTCAGTTGCTCAGAAG GGAGGAGTTGGCAGAAAATAGC	(CTT) ₉	AF351392
JESPR-155-F	м	GCTTAGATCTGGACTAAAATAGCC	(GAA)23	AF351393
JESPR-155-R		GCCTTCAATCAATTCATACG	(CTT) ₆ CCTT	AF351394
JESPR-156-R JESPR-157-F	Р	GAAGGAGAAAGCAACGAATTAG CAAGTTCCCACCATCTTTAC	(CTT)₃(Y)₁₀(CTT)₄(Y)₃(CTT)₄	AF351395
JESPR-157-R JESPR-158-F		CACCATTCGGCAGCTATTTC	(CTT) ₁₂	AF351396
JESPR-158-R JESPR-159-F		CAGCTGACACCCTAGCCTAGACG	(CTT)₀	AF351397
JESPR-159-R JESPR-160-F	Р	AACGAGTTGAAGAGAGAGTGAGGATCC CTTGCTTAGATCTGGACTAACC	(GAA)₄(Y)₂⁊(GAA)₄	AF351398
JESPR-160-R JESPR-161-F		CACCGAGACATTCATATCAC CGGAAGGGCTGCTGATGGAG	(GAA)₅	AF351399
JESPR-161-R JESPR-162-F		CTACCCCCCATTTTTTGGATTCACC CGGCTTCTCTTGCTTAGATCTGG	(CTT)₀	AF351400
JESPR-162-R JESPR-163-F		CATGTTGATCGTCAATCTGGGG CTCCAGTTCACTCCAAATTATC	(CTT)6	AF351401
JESPR-163-R JESPR-164-F	м	GGCACTACTACTGAGAAACAAG GCGCCTATTAGCCATGAACTCAAGG	(CTT)₀(CTTTT)₅	AF351402
JESPR-164-R JESPR-165-F		GACGTTGGCTCGAGTTGTTAAAGG CAAAACTCACCATGGGGAAAC	(CTT)₁₀	AF351403
JESPR-165-R JESPR-166-F	м	GAATCAATGGCAGAAGTGTTGAAG GGCTTCTCTTGCTTAGATCTG	(CTT)₃CTC(CTTTTT)₄	AF351404
JESPR-166-R JESPR-167-F		CAAGCTTGAGTTTCGGGAAC CTCCCCTCTTCTCTTGTTGTC	(CTCTT)₅(CT)₂G(CTCTT)₂	AF351405
JESPR-167-R JESPR-168-F		GTCAACAACACTTGAAGCAC GGCTTCTCTTGCTTAGATCTG	(TAG)2(Y) ₃ (TAG) ₅ (Y) ₃ (TAG) ₅	AF351406
JESPR-168-R JESPR-169-F	Р	GTGCTAATAGAGACCAGCTG CTCAGATCTAATGATTGGGTTGG	(GA)₅(CTT)₁₀	AF351407
JESPR-169-R JESPR-170-F		GAGTAAATTGACCACTTGTTCGC	(CTT) ₁₀	AF351408
JESPR-170-R	Р	CTTATCCTCCAGGTTTCACC	(CTT)	AF351409
JESPR-171-R	•	CCATGCATGTATTAAATTGTGAG		AF251410
JESPR-172-R		ACCATTGAAAAACCATGTC	(GAA) ⁵	AF351410
JESPR-173-F JESPR-173-R		GAGAAACAAATAGATGTCGAAG		AF351411
JESPR-174-F JESPR-174-R	м	GATTGCTGAAATCACAGAGG	(CTT)»	AF351412
JESPR-175-F JESPR-175-R		CCCCTATTGGCTGCTGAAAG GTTTCTTTTTTTTTCCCCTGTA	(CTT) ₁₂	AF351413
JESPR-176-F JESPR-176-R	Р	CGGCTTCTCTTGCTTAGATCTGGAC GGGCATGATAAATGACAATCCTCC	(GAA)₁₅	AF351414
JESPR-177-F JESPR-177-R		GCTTAATCTGGACTAACATATGC CGGTACATACAGCAAAATGC	(CTT)₃	AF351415
JESPR-178-F JESPR-178-R	м	CCGCTGATGTGGCCAGTTAACTTGCC GATGCTTGTCCAACATGGCTTTC	(GAA) ₂₁	AF351416
JESPR-179-F JESPR-179-R		CTGACACTGTATGCTTGCAG CATATTTGGCATATCACATAGAG	(CTT) ₁₂	AF351417
JESPR-180-F JESPR-180-R	Р	GCGTAGTACATATAGATGCCC CTTGGAGTATGTATGCTCTATTC	(GA)₅(GA)₂₀	AF351418
JESPR-181-F JESPR-181-R		CAACTTTTAGATTTGGAAATGG GAGTTGAAGCTTGACCTGTC	(GAA)₀	AF351419
JESPR-182-F	Μ	CTTAGATCTGGACTAGGAGCC	(CTT)₀CTC(CTT)₂	AF351420
JESPR-183-F		CATTGTTTCACTTCAGGTCC	(CTT)₅	AF351421
JESPR-184-F	Μ	CTTAGATCTGGACTAAACTCTTGC	(CTT) ₁₆	AF351422

Name	Polym.†	Primer 5'–3'	Repeat motif	GenBank accession number‡
ESPR-185-F JESPR-185-R	Ρ	CCCAAGCTACAGAGATAACC CACACAAATTGGGTAAGAATAG	(GAA) ₁₃	AF351423
JESPR-186-F		CCGTGTTGTGAGTGGTACAGGTC	(GAA) ₁₃	AF351424
JESPR-187-F		CAGGTCATGAGGAGCAGAAG	(CTT) ₁₁	AF351425
JESPR-187-R JESPR-188-F		GGCTTCTCTTGCTTAGATCTG	(CTT)₃	AF351426
JESPR-189-F		CCATAGACTTGGTTCATGACC	(CTT)₅	AF351427
JESPR-109-R		GCCCGCCATCTTTGAGGATCCG	(CTT)₃	AF351428
JESPR-191-F		GGTCTAGCCTTTCGGAATTTG	(GAA)₁₀	AF351429
JESPR-192-F		GGAACCTCTACTGAATAGTCGGAG	(GAA)₃	AF351430
JESPR-193-F		GATCTGGACTAACTATCTTCTTG	(CTTTCT)₃	AF351431
JESPR-193-R		GAGTTTATTGAGAAAGGCTTTCC	(GAA)11	AF351432
JESPR-194-R	Р	GATCTGGACTAAACTAGTTGATGTG	(GAA)20	AF351433
JESPR-195-R		CCCTAACACCTCTCAGTTTCACAGC	(CTT)₅	AF351434
JESPR-197-F	Р	CAATACCTGGAACATAGACAAATG	(TAC)11	AF351435
JESPR-198-F		GCTTCTCTTGCTTAGATCTGG	(GAA) ₁₂	AF351436
JESPR-199-F		GGCAAAGTCCAAAGGCGGTGG	(GAA)₀	AF351437
JESPR-200-F		CTTCTCTTGCTTAGATCTGGAC	(CTT) ₁₃	AF351438
JESPR-201-F		TCGATCAGTTAGGGTTTTGG	(GAA)6	AF351439
JESPR-202-F		CACCCGGGAAAAGCTAATGTGGTTG	(GAAA)₄(GAA)₁₀	AF351440
JESPR-203-F	м	CTCTTGCTTAGATCTGGACTAAC	(GAA)11	AF351441
JESPR-204-F	Р	CTCCAGGTTCAATGGTCTG	(CTT ₂₀	AF351442
JESPR-205-F	Ρ	CCCAACTCTTTCCAAACTTGAG	(CTT)₀(CT)₀	AF351443
JESPR-206-F	Р		(GA)52	AF351444
JESPR-207-F	м	CAGCAAAGGAACAAGAAACCAGA	(GA) ₃₅	AF351445
JESPR-208-F	Ρ	CGCAACCAAACATATACTTCACAC	(CT) ₁₅	AF351446
JESPR-209-F	М	ATTGAGAGGCATTTTGGTC	(GA)41	AF351447
JESPR-210-F	Р	GCATGTTCTACAATGGTAAGCATA	(CT) ₂₆	AF351448
JESPR-211-F		CATCATTTTTCCAAGTTCCAATTTC	(CT) ₂₅	AF351449
JESPR-212-F	М	CCAAAGGTTTTTGTTGTTGCTC	(CT)21(CA)7	AF351450
JESPR-213-F	NA	TATGGAAACCCTAGGAGAG	(GA) ₁₇	AF351451
JESPR-214-F	Ρ	GTAACATTGACGCGATTATCC	(GA)62	AF351452
JESPR-215-F JESPR-215-R	Ρ	CGAGAAGATGAGATTTGGAGGAG	(GA)22	AF351453

Name	Polym.†	Primer 5'–3'	Repeat motif	GenBank accession number‡
JESPR-216-F JESPR-216-R	М	CAAGAGAACTTACCCAATTAAGCC GGAAACCCTAGGAGAGAGAG	(CT) ₁₆	AF351454
JESPR-217-F	М	GCTCTTGCTTAGATCTGGAC	(CT) ₁₈	AF351455
JESPR-217-R JESPR-218-F	Р	GGGGCTAAACTTGAAAATGACC	(GA) ₂₁	AF351456
JESPR-218-R JESPR-219-F	м	CATGCAGCTTCCAGTTTTG GCATAGTTATGAATGACTCTCTCT	(CT) ₁₉	AF351457
JESPR-219-R	D	GGGGAGTTGAAAAGAAGTATC	(GA)m	AE351458
JESPR-220-R		CTAAGAACCAACATGTGAGACC		AI 33 1430
JESPR-221-F JESPR-221-R	Р	CTTAGGTGCTTCAGGCATGATTC CCCAACCCCTTCCTTC	(GA) ₁₈	AF351459
JESPR-222-F		GGGCCAACATCTTGC GGGGGACATTAATGATTGG	(CT)₁₀	AF351460
JESPR-223-F	Р	TGGTCCAAAGCTCAAAG	(CT) ₁₈	AF351461
JESPR-223-R JESPR-224-F	Р	GGTTACGGATTATTGGACATG GGGGAGCAACGAAAACTTAGC	(GA) ₂₂	AF351462
JESPR-224-R JESPR-225-F	м		(GA)44	AF351463
JESPR-225-R	_	ACTCAAGTGTCCCATCTC		
JESPR-226-F JESPR-226-R	Р	GAGGCATGAATATTCAG GAGACATCAAAGTTTGCA	(GA)24	AF351464
JESPR-227-F	Р		(GA) ₁₉	AF351465
JESPR-228-F	Р	CAGAACAACACCATCAACACTCTCAG	(GA) ₂₁	AF351466
JESPR-228-R JESPR-229-F	Р	CCATTCTCTTTCATTTTCTCC	(CT) ₂₂	AF351467
JESPR-229-R JESPR-230-F	Р	GTTGAAACGAGAAGATGAG GGGACTAAAGAAGTAATTATGCC	(GA) ₃₈	AF351468
JESPR-230-R		GAAACCCTTGGCCATGAG	(0.1)	A F254 400
JESPR-231-F JESPR-231-R	P	CTATGAACTGCTGGCTATGG	(GA) ²²	AF351469
JESPR-232-F JESPR-232-R	Р	CAGACCACGCTATTTTTGCC CGTTGTATTATTTCCAGTGCTCG	(CT) ₁₈	AF351470
JESPR-233-F	М	GAGACATCAAAGTTTGCAGC	(CT) ₁₈	AF351471
JESPR-233-R JESPR-234-F	Р	GCATAGTTATGAACCAAC	(CT)18	AF351472
JESPR-234-R JESPR-235-F	Р	CTAACTCGAATCCGTCAC GAGCAAGGATGAGGAACGAG	(GA) ₄₆	AF351473
JESPR-235-R	D	CAAATTACTCAAGTGTCCCATCTC	(CT)	A F 254 474
JESPR-236-P	P	GGGGCTAAACTTGAAAAATGAC	(CT)22	AF331474
JESPR-237-F JESPR-237-R	Р	GGCATCTCCATGTAGAAATAG TGTCAGTCCCCCATCACC	(GA) ₁₇	AF351475
JESPR-238-F		CAGAGAGCTTAGTTAACCC	(GA) ₂₀	AF351476
JESPR-230-R JESPR-239-F	м	CGACCTGGGATGAGATTTTC	(GA) ₁₈	AF351477
JESPR-239-R JESPR-240-F	Р	CAATAGTGAAGCCCAGTAAG CAGATCCCCTTTTCTTTC	(CT) ₁₆	AF351478
JESPR-240-R		GAAGAAGCAAAGCGAGAG	(CA)	A E251470
JESPR-241-P		GATTCTTCTTATCATCCCC		AF331479
JESPR-242-F JESPR-242-R	Р	CAATGCGATTTTCAAACCC GCCAGTGTGATGGATATCTGC	(CT) ₁₇	AF351480
JESPR-243-F	Р	GTGTGTTCTTAGGTGCTTCAG	(GA) ₁₆	AF351481
JESPR-244-F		GAAGATCTTCATCATTTTTCCAAG	(CT) ₁₈	AF351482
JESPR-244-R JESPR-245-F		CAGAGAGCTTAGTTAACCCA GAGACACCAAAGTTTGCAGC	(CT) ₁₈	AF351483
JESPR-245-R		GTTTGGAGGCTGAAGGATGTC	(CT) ₁₂	ΔF351/8/
JESPR-246-P		GAGCTCCACTCCAAAGCC		AFJJ1404

Name	Polym.†	Primer 5'–3'	Repeat motif	GenBank accession number‡
JESPR-247-F	Μ		(CT) ₁₅	AF351485
JESPR-248-F		TCTCTCCCTTTCAATCTC	(CCT) ₈	AF351486
JESPR-248-R JESPR-249-F	Р	CCATTACTCTCCTCCAAGTATG	(GT) ₁₅	AF351487
JESPR-249-R JESPR-250-F		CCAAGAAATCCACCTCATAAG	(GT)10	AF351488
JESPR-250-R JESPR-251-F	Р	CAACTAGAATGATAAGACAC	(CA) ₁₅	AF351489
JESPR-251-R JESPR-252-F	Р	GCTATTGTTGATCTGATCCTG	(GT) ₁₇	AF351490
JESPR-253-F		CAAACCACGTCTTCTCT	(GT)11	AF351491
JESPR-254-F	Р	GTATTGGTTTAATAAAAAGT	(TA)₅(GT)₁₀	AF351492
JESPR-254-R JESPR-255-F		GTATTGGTTTAATAAAGGT	(GT)₅	AF351493
JESPR-256-F	м	GTCAATGAATGCAAATGCAATGCAATGCAATGCAATGCA	(CA) ₁₂ (TA) ₄	AF351494
JESPR-256-R JESPR-257-F		CAAATGATAATATAAAGACTG	(GT) ₉	AF351495
JESPR-257-R JESPR-258-F	м	CAAAGTTGGGATTAGAGAC	(CA)17(TA)₅	AF351496
JESPR-258-R JESPR-259-F		CCCTTAAATCATAAGAAAACAC	(CA) ₁₁	AF351497
JESPR-259-R JESPR-260-F	Р	CTAGACTCATATGCCCATCTAC	(CA) ₁₂ (TA) ₄	AF351498
JESPR-261-F	Р	GGTCATCCTAGGTTCTC	(CT)10(CA)11	AF351499
JESPR-262-F		ACCATCTGTCTTTGGTTTTC	(CA) ₁₃	AF351500
JESPR-263-F		CCTTTTTATCTCATGGAAACAC	(CA) ₁₄	AF351501
JESPR-263-R JESPR-264-F		GCCCCGCGCACTATGAAC	(CA) ₁₂	AF351502
JESPR-265-F	м	GATCAACTACAACGCAC	(CA) ₁₁ (TA) ₆	AF351503
JESPR-265-R		GGTGACTCTAGCTCCG	(CA) ₉	AF351504
JESPR-266-R JESPR-267-F	м	CCAGCAGTITIGGTCTC	(CA) ₁₈	AF351505
JESPR-268-F		GATAAACCCCAGCATTGC GGTTGGAAAGGAAGGAC	(CA) ₁₂	AF351506
JESPR-269-F		GCATCGGGATGGTGTG	(GT)₅	AF351507
JESPR-270-F	Р	ACGCAACTCGCATATAAACAC	(CA)15(TA)3	AF351508
JESPR-270-R	м	GGAGCTGATGTCTTG	(CA)12(TA)5	AF351509
JESPR-271-R JESPR-272-F		GGGGCACAACAGAAGTCAG	(CA) ₁₀	AF351510
JESPR-272-R JESPR-273-F	Р	GGTGTGAGTTATCGCCAAAGG	(TA)3(CA)14	AF351511
JESPR-273-R JESPR-274-F	Р	GCCCACTCTTTCTTCAACAC	(CA) ₁₃	AF351512
JESPR-2/4-K JESPR-275-F	Μ	CATTGTCTTATCCTCAAATACCGAATTC	(CA) ₁₈ (TA) ₆	AF351513
JESPR-275-R JESPR-276-F	Μ		(CA)14(TA)4	AF351514
JESPR-276-R JESPR-277-F JESPR-277-R	Ρ	AI IGGTTIAAIAAAAGGT CGTAATGGGAAAAAGGTCAGTG CGATAGAAGTCCTGATTTTTGG	(GT) 11(TA) ₄	AF351515

Name	Polym.†	Primer 5'–3'	Repeat motif	GenBank accession number‡
JESPR-278-F	Μ		(CA)10(GA)3	AF351516
JESPR-279-F	м	GGAGTGAAAGCTAATGCCTG	(CA) ₂₈	AF351517
JESPR-279-R JESPR-280-F		GGAGTACAAGGACCAGCAG	(GT)₁₀	AF351518
JESPR-280-R JESPR-281-F	м	TGATTGATCCTAGTTCCGC	(TA)₄(GT)12	AF351519
JESPR-281-R JESPR-282-F		GTCTCCTTACTTCGCAAC GGAGTACAAGGACCAGCAG	(TG) ₁₀	AF351520
JESPR-282-R JESPR-283-F	м	CATAAGCCATGGTTGTAC TCATCATGCTATTCATTGAACTAA	(TA)₅(TG)₁₄	AF351521
JESPR-283-R JESPR-284-F	м	GCAGCGAGAATTATCATGG CAAGATCCATCTGCTGATTAG	(CA)₂₅(TA)₅	AF351522
JESPR-284-R		GTATATACAAGTATAAAGTATTGG		
JESPR-285-F			(CA) ₁₀	AF351523
JESPR-286-F	Р	GGAGGACATGGGTTTGAAC	(CA) ₃₀	AF351524
JESPR-286-R		GCATGCATGTAAAATGTAATGG		1 5054505
JESPR-287-F			(GI)12	AF351525
JESPR-288-F	м	CATGTATATACAAGTATAAAG	(TA)₅(GT)₁1	AF351526
JESPR-288-R		CAATATAAGCACGTAAC		
JESPR-289-F		CATTGCATTTTGCCCC	(GAA) ₉	AF351527
JESPR-289-R		AATCTAGCGCACAAGGGC		
JESPR-290-F		ACCGGTCAGTCCTCATAATC	(CTT) ₆	AF351528
JESPR-290-R	_	GCCAAGGTCGTAGTCCAGG		
JESPR-291-F	Р		(CTT)8	AF351529
JESPR-291-R				A E251520
JESPR-292-F			(CTT)7	AF301030
JESPR-292-R		CGAGATTTTAAGATTGTGC		ΔF351531
JESPR-293-R		TGATGGCAAAAGCACC		AI 331331
JESPR-294-F	м	CTCCTCATTTTGCACGTCCTCTTC	(AGA) ₁₀	AF351532
JESPR-294-R		AGGGCTTCATTCTTCTTCG		
JESPR-295-F		GCCTCGTTTAAGCCCATAAAC	(CTT) ⁷	AF351533
JESPR-295-R		GAGGGCCATAGTCACCGG		
JESPR-296-F	Р	GGGTGTTACATAGAGTGTATAAAATTG	(TCA)₀(CTT)₁₃	AF351534
JESPR-296-R		TGACCTCAATTTAGAAACCC		
JESPR-297-F	Р	GAGAACTCGTTAAAGCACAATG	(GAA) ₁₂	AF351535
JESPR-297-R		GTTAATAGAGTTGGGTTTCTCATG		
JESPR-298-F	Р	GATGCCCTCGTGTTAAAG	(GAA) ₁₇	AF351536
JESPR-298-R	_	GGACCTTCGGAATAATTACC		
JESPR-299-F	Р		(CAI) [®]	AF351537
JESPR-299-R	в			A E254520
JESPR-300-P	F			AF331330
JESPR-301-F		TGAGTTCCGAATTCCTTGG	(CAT).	ΔF351530
JESPR-301-R		CGGGCTAAGTGTTTTTCG		AI 331333
JESPR-302-F		CACTCCTAGCTTCTTGGCATC	(GAT)₅	AF351540
JESPR-302-R		CTGCGATCTTGGCACAG	(0))	
JESPR-303-F		CATCGGAAAACTCTGAAC	(CAT)₀	AF351541
JESPR-303-R		GTAGCAGTACAGATGAAAGAG		
JESPR-304-F		GAAATGCATTCCCTCAAAAGC	(GAT)₀	AF351542
JESPR-304-R		AGACTCTATCGAATGACCCTG		
JESPR-305-F		CGATCCATCAAAGGCGAC	(GAT)6	AF352075
JESPR-305-R		CCGCCTCAGCACCATTTAC		
JESPR-306-F	М	CCCCTTACATTATATTGACCTGC	(CT)₁₀(CAT)ଃ	AF351543
JESPR-306-R		CCATGTGAAAAGGGGATA		
JESPR-307-F			(IGA)11	AF351544
JESPR-307-R				A 5054545
JESPK-308-F	۲		(GAI)7(GA)₄	AF351545
JE94K-308-K		GUIGGIGGAIAITTATTU		

Name	Polym.†	Primer 5'–3'	Repeat motif	GenBank accession number‡
JESPR-309-F		CGAGACTCACANCGAGGACAC	(TG)₅(GAT)₀	AF351546
JESPR-309-R		GGGATTGAACAACACATGAAGC		
JESPR-310-F		GAGGCACATTGAGAAATGTTC	(CAT)₀	AF351547
JESPR-310-R		CAATGAGTGGGTTAGTATTGG		
JESPR-311-F	М	GGGGCTCGGTTAAAGGTAG	(CT) ₂₀	AF351548
JESPR-311-R		GGATATCTGCAGAATACGGC		