

High-throughput, Automated INTip[™] SPE Combined with AlbuSorb[™] Products for Efficient Albumin and Albumin/IgG Depletion

Matthew Fitts 1; William E. Kemnitzer 1; Paul Meeh 1; <u>Matt Kuruc</u> 2; Swapan Roy 2; Sowmya Avadhani 2

¹DPX Technologies, Columbia, SC; ²Biotech Support Group LLC, Monmouth Junction, NJ Corresponding Author: mkuruc@biotechsupportgroup.com

Poster presented at the ASMS Annual Conference, Philadelphia PA, Nov. 4, 2021

INTip[™] SPE

Barrier

Introduction

As LC-MS proteomic analysis moves from discovery to the clinic, there is increasing need for high throughput automation in sample prep workflows. We report here new methods combining technologies to incorporate beads for depletion of highly abundant blood proteins, into pipette tips known as XTRaction tips or XTR tips. The XTR tip format improves ease of use and scalability to process multiple samples in parallel, utilizing 96-well plates and automated liquid handlers. The incorporated beads are consumable, and not derived from immuno-affinity. The beads are loosely contained inside the XTR tips for a dispersive functionality that maximizes depletion efficacy. Thus, this combination of technologies achieves fast, streamlined workflows that simply and robustly increase efficiencies necessary for clinical proteomic analysis of whole blood, serum and plasma.

Methods

Biotech Support Group (BSG) supplies specialized beads for the selective depletion of Albumin (AlbuSorbTM) and Albumin & IgG (AlbuSorbTM PLUS), and Hemoglobin (NuGelTM HemogloBindTM), including all necessary buffers. DPX Technologies provides INTip(tm) SPE (XTR tips). This new method uses a serum volume of 20 μ L and 65 mg of AlbuSorbTM or AlbuSorbTM PLUS TM for albumin or albumin/IgG depletion respectively. For HemogloBindTM beads was incorporated into the XTR tips. Each bead type utilizes similar protocols, as described. The workflow was performed using an Integra VIAFLO with varied cycle times to establish optimal extraction performance.

Replicate Number

LC-MS Analysis Methods

In-gel digestion

Samples (~20 µg protein) were run by SDS-PAGE, bands excised and proteins reduced with 10 mM DTT for 30 min at 60°C, alkylated with 20 mM iodoacetamide for 45 min at room temperature in the dark and digested overnight with 0.5 µg of either trypsin (Pierce MS Grade, ThermoFisher) at 37°C. Peptides were extracted twice with 5% formic acid, 60% acetonitrile and dried under vacuum.

Liquid chromatography-tandem mass spectrometry (LC-MS/MS)

LC-MS/MS was conducted using a nano LC (Dionex UltiMate[™] 3000 RLSCnano System, ThermoFisher) interfaced with an Eclipse[™] Tribrid[™] mass spectrometer (ThermoFisher). Each sample (~25% of digests) was loaded onto a fused silica trap column (Acclaim PepMap 100, 75 µm x 2 cm, ThermoFisher). After washing for 5 min at 5 µl/min with 0.1% TFA, the trap column was brought in-line with an analytical column (nanoEase M/Z peptide BEH C18, 130Å, 1.7 µm, 75 µm x 250 mm, Waters) for LC-MS/MS. Peptides were fractionated at 300 nL/min using a segmented linear gradient of 4-15% B in 5 min (where A: 0.2% formic acid, and B: 0.16% formic acid, 80% acetonitrile), 15-25% B in 40 min, 25-50% B in 44 min, and 50-90% B in 11 min. Solution B then returns at 4% for 5 minutes for the next run. The scan sequence began with an MS1 spectrum (Orbitrap analysis, resolution 120,000, scan range from M/Z 375–1500, automatic gain control target 1 x 10⁶, maximum injection time 100 ms). The top S (3 sec) duty cycle scheme was used to determine the number of MS/MS scans performed for each cycle. Precursor ions of charges 2-7 were selected for MS/MS and a dynamic exclusion of 60 sec was used to avoid repeat sampling. Precursor ions were isolated in the quadrupole with an isolation window of 1.2 m/z, automatic gain control target 1 x 10⁵, and fragmented with higher-energy collisional dissociation with a normalized collision energy of 30%. Fragments were scanned in Orbitrap with resolution of 15,000. MS/MS scan ranges were determined by the charge state of the parent ion but a lower limit was set to 110 m/

z.

Database Search

Peak list MASCOT Generic Format (MGF) files were generated by Thermo Proteome Discoverer (v. 2.1) and searched against *E.coli* database from NCBI, the Uniprot human reference proteome database and a database composed of common lab contaminants (CRAP) using an in-house installation of GPM Fury¹ (X!Tandem Alanine). Mudpit searches were conducted using all mgf files from LC-MS/MS analysis of digests from a given type of protease. Parameters for the initial search were as follows: parent mass error ± 7 ppm; fragment mass error ± 20 ppm; fixed modification of carbamidomethylation on cysteine and variable modifications of methionine monooxidation, serine, threonine and tyrosine phosphorylation. Variable modifications during three rounds of refinement besides serine, threonine and tyrosine phosphorylation at glutamine and asparagine; 3rd round: deamination at glutamine and asparagine; 3rd round: dioxidation at methionine and tryptophan. Protease specificity was set to trypsin (C-terminal of R/K unless followed by P). There was 1 allowed missed cleavage during the preliminary search and 5 during refinement. Minimum acceptable peptide and protein expectation scores were set at 10⁻² and 10⁻⁴, respectively. The overall peptide false positive rate² was 0.07%.

¹Craig R. & Beavis RC. TANDEM: matching proteins with tandem mass spectra. Bioinformatics. 2004 20:1466-7. ²Gupta N, et al., J Am Soc Mass Spectrom. 2011 22:1111-20

AlbuSorb[™] PLUS Protocol & Results

65 mg AlbuSorb™ PLUS in Integra 300 µL tip

- 1. 5cycles of 250 μL pipetting in 300 μL binding buffer to wet sorbent
- 2. 5 cycles of 250 μL pipetting in 300 μL fresh binding buffer
- 3. 20 μL human serum diluted in 200 μL binding buffer for total sample volume of 220 μL to create sample for depletion
- 4. 25 cycles of 200 μL pipetting for albumin and IgG removal
- 5. Retain depleted sample for analysis

	Serum Control	After Depletion	
IgG Region			
Albumin	OD2	280	

	Approx Serum	AlbuSorb™PLUS/INTip	
Protein Category	Concentration	LC-MS Spectral Count	Remarks
	%	Analysis (% of Total)	
Albumin	50	16%	
Immunoglobulins	20		Categorizing Ig variable regions is
	20		challenging
		10%	AlbuSorb™ PLUS uses an optimized
IgG			Protein A, much more specific for
			IgGs than other immunoglobulins
Combined IgM, IgA, IgD		3%	
Apolipoproteins	4	10%	
Complement & Coagulation related	10		
C3	3	9%	
	, 7 5	4%	BSG has observed in prior work that
Other Complement-related &			Complement (except C3) and
Coagulation/Fibrinolysis			Coagulation proteins interact on
			beads & tend to deplete as a group
Other Proteins	6	48%	3X enrichment relative to Albumin
# of Unique Protein IDs (≥2 Sp. Cts)		220	

NuGel™ HemogloBind ™ Protocol & Results			Whole Blood Lysate Control	After NuGel™ IemogloBind™/ INTip™	
1. Dilute 10 μL whole blood in 200 μL HB buffer to create hemolyzed sample for depletion	Total Spectral Counts	s (Sp. Cts)	14532	1905	4
	Total Protein IDs (≥2	2 Sp. Cts)	306	420	
2. Let stand 10 minutes to prepare sample for binding	# of Unique Protein Sp. Cts)	IDs (≥2	27	134	
/ removal of hemoglobin	# of Enriched Prote	eins ≥3X		47	
3. 40 mg NuGel™ HemogloBind™ matrix in Integra 300 uL tip	# of Depleted Protein than Hemoglobin su ≥3X	ns (other ubunits)	6		
	Representative Enriched Proteins after NuGel HemogloBind (Uniprot ID)		Description	Sp. Cts control	Sp. Cts after
4. 2-300 μL aliquots of HB buffer	sp P01023 A2MG_HUMAN sp P04114 APOB_HUMAN sp P02751-1 FINC_HUMAN sp P43652 AFAM_HUMAN	Alpha-2-macr Apolipoprote Fibronectin Afamin	oglobulin in B-100	376 280 120 23 22	896 660 248 54 120
5. Pipette 250 μL for 5 cycles in aliquot 1	sp P11277 37161_HUMAN sp P02549 SPTA1_HUMAN sp P04003 C4BPA_HUMAN sp P08697 A2AP_HUMAN sp Q06033 ITIH3_HUMAN sp P02730 B3AT_HUMAN	Spectrin beta Spectrin alpha C4b-binding p Alpha-2-antip Inter-alpha-tr Band 3 anion	a chain protein alpha chain ilasmin ypsin inhibitor heavy chai transport protein	32 39 15 19 n 14 42	163 50 48 43 110
6. Repeat 5 cycles of 250 μ L volume in aliquot 2	sp P05543 THBG_HUMAN sp P09871 C1S_HUMAN sp 075882 ATRN_HUMAN sp P16157 ANK1_HUMAN sp P04406 G3P_HUMAN	Thyroxine-bin Complement Attractin Ankyrin-1 Glyceraldehyd	ding globulin C1s subcomponent de-3-phosphate	7 9 4 18 28	27 34 18 73 61
7. Pipette 200 μL in sample for 5 to 10 cycles of	sp P02750 A2GL_HUMAN sp P62258 1433E_HUMAN sp P20742 PZP_HUMAN	Leucine-rich a 14-3-3 protein Pregnancy zon	alpha-2-glycoprotein n epsilon ne protein ptidaso 2	4 11 7	13 51 36
	sp P80108 PHLD_HUMAN tr C9JIF9 C9JIF9_HUMAN sp P15169 CBPN_HUMAN	Phosphatidyli Acyl-peptide Carboxypepti	nositol-glycan-specific hydrolase dase N catalytic chain	1 11 2	10 38 14
Hemoglobin Depletion OD414 (Avg 2 readings)	sp P05160 F13B_HUMAN sp P16452 EPB42_HUMAN sp Q13630 FCL_HUMAN	Coagulation f Protein 4.2 GDP-L-fucose	actor XIII B chain synthase	1 5 8	13 38 33 28
40	sp P22314-2 UBA1_HUMAN sp P07900 HS90A_HUMAN sp P12955 PEPD_HUMAN	Ubiquitin-like Heat shock pr Xaa-Pro diper	modifier-activating enzyr rotein HSP 90-alpha otidase	ne 8 3 3	28 28 23
30	sp P23142 FBLN1_HUMAN sp P25786 PSA1_HUMAN sp P31946 1433B_HUMAN	Fibulin-1 Proteasome s 14-3-3 protei	ubunit alpha type-1 n beta/alpha	4 2 4	19 25 18
20	sp P45974 UBP5_HUMAN sp Q6XQN6 PNCB_HUMAN sp P09211 GSTP1_HUMAN	Ubiquitin carl Nicotinate ph Glutathione S	ooxyl-terminal hydrolase 5 osphoribosyltransferase -transferase P	5 2 3 5	20 17 15
75% Removal Efficiency	sp P61970 NTF2_HUMAN tr F6TLX2 F6TLX2_HUMAN sp P07996 TSP1_HUMAN	Nuclear trans Glyoxalase do Thrombospor	port factor 2 main-containing protein 4 ndin-1	4 4 4 nd	15 15 19
10 94% Removal	sp P28070 PSB4_HUMAN sp P00488 F13A_HUMAN sp P21980 TGM2_HUMAN	Proteasome s Coagulation f Protein-glutar	ubunit beta type-4 actor XIII A chain mine gamma-	4 1 1	15 16 14
0 Whole Blood Lysate 5 Cycles Binding 10 Cycles Binding	sp Q14974 IMB1_HUMAN sp P53396 ACLY_HUMAN sp P06132 DCUP_HUMAN tr B3KQV6 B3KQV6 HUMAN	Importin subu ATP-citrate sy Uroporphyrin Serine/threor	unit beta-1 nthase ogen decarboxylase nine-protein phosphatase	nd 1 1 nd	14 13 13 10

Conclusions

The optimal workflow consists of between 10 to 25 aspirate/dispense steps with total processing time of approximately 20-30 minutes. These methods have minimal hands-on requirements. The final depleted sample volume recovery was approximately 200 µL. We demonstrate comparable depletion efficiencies to those pre-established by BSG for microfuge spin-filter formats. For Albumin and IgG, depletion was consistently within a 70-80% range, and sub-proteome LC-MS analysis revealed between 220-400 protein identifications, and sub-proteome enrichments of 3-5X. For AlbuSorb™, BSA was monitored at 50 mg/mL and was shown to be depleted to >90%; total protein depletion from human serum was shown to be >80%. For AlbuSorb™ PLUS, Albumin and IgG depletion percentage in human serum is estimated to be ~70%. For NuGel™ HemogloBind™, free Hemoglobin depletion is estimated to be >90%. Furthermore, we demonstrate exquisite reproducibility of depletion of Albumin and IgG in five human serum replicates.

The INTip[™] SPE formats can be applied to the full range of BSG products, including Albumin & IgG removal, and Hemoglobin removal. As they do not rely on immuno-affinity, they are consumable and cost-effective. Optimization for specific applications can include bead amounts, sample volume loads, and cycle times. Functional integrity of all proteins is maintained, and downstream proteomic analysis can include LC-MS, immunoassays, cellular response and enzymatic assays.

Finally, INTip[™] SPE formats have been proven to be compatible with most automation platforms, i.e., Integra, Hamilton, etc. As blood-derived samples for clinical proteomics progresses, simple, robust and reproducible sample preparation for targeted analysis will require consumable formats and compatibility with automation. The products and methods described here are uniquely fit for that purpose.

For more information, see our joint press release: <u>https://www.biotechsupportgroup.com/Articles.asp?</u> ID=615