HemogloBind™
Hemoglobin Removal and Capture

- Has a high degree of specificity for hemoglobin, without cross-reacting with other proteins or analytes
- Suitable for
 - Hemolyzed serum/plasma
 - Whole Blood, Dried Blood Cards (DBS) or Erythrocyte lysates
 - Tissue Homogenates, compatible with RIPA buffer
- Applications in analytical interferences, enzyme monitoring, proteomics
- Species Agnostic
- Over 30 citations including analysis in cellular thermal shift assay (CETSA), LC-MS proteomics, Hemoglobin derivatives, Western blot, enzyme activity, ELISA
- Related product NuGel™HemogloBind™ comes in a dry powder format, compatible with high throughput 96-well automation, see https://www.biotechsupportgroup.com/NuGel-HemogloBind-Hemoglobin-Capture-Reagent-p/np-ho.htm

Poly-electrolytes are polymers with repeating units of stationary charges. HemogloBind™ is derived from insoluble elastomeric poly-electrolytes that bind proteins through an empirically derived chemistry combining elements of polymer composition, and cross-linking architecture. As with bio-polymers like DNA and Heparin, governing their reactivity is the spatial presentation of electrostatic groups along a flexible polymer chain.

HemogloBind™ does not cross react with most common serum components, making it an excellent tool in numerous applications. These include analytical protocols where optical interference is problematic. Hemoglobin variants, as in thalassemia, bind with differential affinity towards HemogloBind™, though this has not been fully evaluated. For purification and/or analysis of hemoglobin, a modest elevation in pH will facilitate desorption from the polymer.
Specification

HemogloBind™ is supplied as an aqueous suspension of a synthetic polymer, pH 6.5. After centrifugation, the ratio of liquid to gel pellet is about 2 parts liquid to 1 part pellet.

Storage

Supplied as an aqueous suspension of synthetic polymer, pH 6.5. The reagent when not used must be kept sealed and stored at 4°C. Do not freeze. HemogloBind™ retains full activity when stored at 4°C for 6 months. Expiration date is shown on label.

Notes: Hemoglobin concentrations in hemolyzed serum/plasma vary greatly. Protocols are intended as guidelines, but it is recommended to try different ratios of HemogloBind™ to sample for optimal results.

Spin-Filters (low protein binding, 0.45 µm filter element) are not supplied, but can be purchased separately, please inquire.

Guidelines for determining volume ratio of HemogloBind™ to sample. Use this chart to estimate the amount of Hemoglobin in samples containing mostly Hemoglobin (as in lysed erythrocytes) or mostly serum/plasma proteins (as in hemolyzed serum). Adjust volume ratio as necessary to optimize for investigative goals.

| Ratios are based on volume of HemogloBind™ suspension to volume of sample |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Total OD_{410} | 26.6 | 15.7 | 8.4 | 4.7 | 2.5 | 1.8 | 1.2 |
| Approx Hb conc. (mg/ml) | 20 | 10 | 5 | 2 | 1 | 0.5 | 0.3 |
| Erythrocyte Lysate | 2:1 | 1:1 | | | | | |
| Hemolyzed Serum/Plasma | 2:1 | 1:1 | | | | | |
| Whole Blood Lysate | 2:1 | 1:1 | | | | | |
| Dried Blood Card Extract | 2:1 | 1:1 | | | | | 1:2 |
PROTOCOL – To Treat 250 µl of Hemolyzed serum using microfuge tubes
1. Shake the HemogloBind™ suspension.
2. Using wide-bore pipette tips, pipette 250 µl or 500ul of the HemogloBind™ suspension.
3. Add 250 µl of the hemolyzed serum. (~10 mg Hb /mL)
4. Vortex for 30 seconds.
5. Mix by inversion for 10 minutes.
6. Centrifuge for 1-2 minutes at 9000 RPMs (8,000xg).
Supernatant contains hemoglobin depleted sample, while the solid contains the hemoglobin removed.

PROTOCOL – To Treat 250 µl of Hemolyzed serum in Spin-Filter Tube
1. Shake the HemogloBind™ suspension.
2. Using wide-bore pipette tips, pipette 250 µl or 500ul of the HemogloBind™ suspension into the filter of the Spin-Filter tube set.
3. Add 250 µl of the hemolyzed serum (~10 mg Hb/mL) to the HemogloBind™ suspension. Vortex for 20 seconds.
4. Mix by inversion for 10 minutes.
5. Centrifuge for 1-2 minutes at 9000 RPMs (8,000xg).
Filtrate contains hemoglobin depleted sample, while the solid contains the hemoglobin removed.

PROTOCOL – To Treat Blood Sample Using Microfuge Tube
1. Shake the HemogloBind™ suspension.
2. In a separate microfuge tube, to 10-20 µl of blood sample, add 100-200 µl 0.02M K₂HPO₄ pH 6.5. Vortex for 5 minutes.
3. Add 100-200 µl of HemogloBind™ suspension to the sample from step 2.
4. Vortex or mix well for 10 minutes at room temperature followed by centrifugation for 4 minutes at 10,000 rpm (8,000xg).
5. Collect the filtrate or supernatant which contains hemoglobin depleted sample, while the matrix contains the hemoglobin.
Supernatant contains hemoglobin depleted sample, while the solid contains the hemoglobin removed.

PROTOCOL – To Treat Blood Sample Using Spin-Filter Tube
1. Shake the HemogloBind™ suspension.
2. Using the filter tube of the Spin-filter set, to 10-20 µl of blood sample, add 100-200 µl 0.02M K₂HPO₄ pH 6.5. Vortex for 5 minutes.
3. Using wide-bore pipette tips, pipette 100-200 µl of the HemogloBind™ suspension into the same sample Spin-Filter tube.
4. Vortex for 20 seconds.
5. Mix by inversion for 10 minutes.
6. Centrifuge for 1-2 minutes at 9000 RPMs (8,000xg).

Filtrate contains hemoglobin depleted sample, while the solid contains the hemoglobin removed.

Desorption of Bound Hemoglobin
For purification and/or analysis of hemoglobin, 100 mM Tris-Borate, pH 9, will facilitate desorption of hemoglobin bound to HemogloBind™.

Hemoglobin Variants
Hemoglobin variants, as in thalassemia and glycosylated-hemoglobin, bind with differential affinity towards HemogloBind™. This has not been fully characterized.

Selection of HemogloBind™ Reference Applications

Hemolyzed Serum Analyses

The patent application describes synthetic peptide compounds for therapy and diagnostics of complement-mediated diseases, such as inflammatory diseases, autoimmune diseases, and microbial and bacterial infections and non-complement-mediated diseases, such cystic fibrosis and various acute diseases. The invention describes Peptide Inhibitors of Complement C1. In the example description, the patent states "Due to large amounts of hemolysis in the latter time points and the associated optical interference in bilirubin analysis, all the samples were pre-treated with HemogloBind™ (Biotech Support Group, NJ) prior to analysis with the Bilirubin Assay Kit."

Hemolyzed Serum Exosome Analyses

The researchers report on a novel strategy of therapeutic antibody treatment to target cancer-derived EVs and inhibit the metastasis of breast cancer in a mouse model. The article states "Hemoglobin was accumulated with HemogloBind™ beads...EVs in the sera were concentrated by ultracentrifugation...”.

Red Cell Lysates
Hojo-Souza NS, de Azevedo PO, de Castro JT, Teixeira-Carvalho A, Lieberman J, et al. (2020) Contributions of IFN-γ and granulysin to the clearance of Plasmodium yoelii blood stage. PLOS Pathogens 16(9): e1008840. https://doi.org/10.1371/journal.ppat.1008840

The authors investigated how Plasmodium infection induces MHC-I expression on Retics. In addition, whether granulysin helps control Plasmodium infection in vivo has not been studied. To remove interferences associated with Hemoglobin, the article states, "For western blot analysis, erythroblasts pellets were resuspended in RIPA Buffer (Sigma).... The Retics were treated with HemogloBind ...”.

The cellular thermal shift assay (CETSA) protocol presents a comprehensive strategy for the identification of drug targets. CETSA enables proteome-wide target screening for unmodified antimalarial compounds with undetermined mechanisms of action, providing quantitative evidence about direct drug–protein interactions. The experimental workflow involves treatment of *P. falciparum*-infected erythrocytes with a compound of interest, heat exposure to denature proteins, soluble protein isolation, enzymatic digestion, peptide labeling with tandem mass tags, offline fractionation, and liquid chromatography–tandem mass spectrometry (LC-MS) analysis. The article states "The intact-cell CETSA protocol features a HemogloBind- based sample processing step, which provides a relatively fast, reliable and inexpensive method to deplete >90% of hemoglobin from processed intact-
cell samples. As a result, it leads to a 40-50% increase in the number of peptide spectrum matches (PSMs) for *P. falciparum* and non-hemoglobin human proteins.

This study used multiplexed quantitative proteomics to identify candidate substrates of UBE2O, an E2 (ubiquitin-conjugating) enzyme, in an unbiased and global manner. Because of the overly abundant presence of Hemoglobin, selective depletion of Hemoglobin was necessary. The article states "Reticulocytes were lysed by vortexing for 5 minutes at room temperature... An additional 10 bed vol of Hemoglobin suspension was added to the samples, which were then vortexed for another 10 min at room temperature followed by 4 min of centrifugation at 10000 x g. The supernatants, which contain hemoglobin-depleted sample, were ... processed for TMT quantification."

Whole Blood Lysates

The author's goals were to gain systems-level insights into SARS-CoV-2 pathogenesis. For that, they compared the blood proteome and phosphoproteome of ICU patients with or without SARS-CoV-2 infection, and healthy control subjects by quantitative mass spectrometry. To remove the highly abundant amount of Hemoglobin, the article states "Hemoglobin was depleted from PBMC whole cell lysate samples according to HemogloBind™ manufacturer instruction with modifications."

The authors studied blood samples from a new large pedigree with SNCA gene duplication (PARK4 mutation), to identify effects of SNCA gain-of-function as potential disease biomarkers. The article states "For protein extraction from the EDTA tubes, 300 μl blood were lysed with equal amount of 1% SDS-TRIPA buffer [50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 1 mM EDTA, 1% Igepal CA-630 (Sigma), 0.5% sodium deoxycholate, 0.1% SDS, 1 mM PMSF and one tablet Complete Protease Inhibitor Cocktail (Roche)] and sonicated for 10 sec. The blood lysates were rotated at 4 °C for 30 min and centrifuged at 4 °C for 30 min. The supernatants were depleted in hemoglobin content using a commercial kit (HemogloBind™) following the manufacturer's instructions."

Diabetic kidney disease, a common complication of both type 1 and type 2 diabetes, is associated with significant morbidity and mortality, and represents the most common cause of chronic kidney disease. The study hypothesized that protective pentose phosphate pathway action in diabetes might be compromised by limited intracellular availability of an active transketolase cofactor thiamine diphosphate (TDP). To evaluate the levels of thiamine transporter proteins in whole blood, the article states "For protein isolation, whole blood aliquots were lysed with water and haemoglobin was removed using HemogloBind™ (Biotech Support Group) according to manufacturer's instructions..."

Hemoglobin Isolation and Derivative Analysis

In this study, the researchers considered specific methomyl hemoglobin adducts detected by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q/TOF-MS). To help isolate Hemoglobin, the article states "Hb was separated with HemogloBind in accordance with the manufacturer's instructions." The authors conclude that one Hemoglobin derivative, the W-adduct could be used as a biomarker of methomyl poisoning.
Tissue Lysates, LC-MS Proteomics

The aim of this study was to validate a multiplex proteomic assay for the identification of target peptide fragments by multiple reaction monitoring on a triple quadrupole mass spectrometer originating from tissue-specific proteins. The article states "If samples contained excessive quantities of hemolyzed red blood cells, four volumes of HemogloBind™ were added." The authors conclude that the mass spectrometry-based workflow offers significant advantages compared to existing serological methods.

HemogloBind™, contributed to this rigorous examination of protein complexes. When our products (HemogloBind™ & NRicher™ 6) were used as a pretreatment step in the overall workflow, twice the number of observations and annotations became possible. Furthermore, this study demonstrated the importance of a key feature implicit to all of our products: that is the maintenance of functional and structural integrity after separations.

Species Agnostic – Applications to Different Species

To generate a more accurate model of Glucose 6 phosphate dehydrogenase deficiency, the human sequence for a severe form of G6PD deficiency (Med -) was knocked into the murine G6PD locus and confirmed by Western blot. The article states "Briefly, RBCs were washed 3 times PBS, followed by transfer of one part washed RBCs into three parts water, followed by end over end rotation for 5 min at room temperature to lyse the RBCs. Lysed RBCs were then mixed 1:1 with HemogloBind™, followed by end over end rotation for 10 min at room temperature. HemogloBind™ and bound hemoglobin were pelleted by centrifugation, and supernatants subjected to an additional hemoglobin depletion with HemogloBind™. Supernatants were used for western blotting.”

The purpose of this study was to survey wild deer across Great Britain for recent evidence of Schmallenberg virus (SBV). Postmortem blood samples were tested for SBV antibodies. Because of the presence of Hemoglobin interference in many samples, the article states "In order to avoid poor quality samples yielding false ELISA results, 59 samples estimated to have above 50mg/dL and less than 250mg/dL haemoglobin concentration, according to their colour, were selected for treatment with HemogloBind™ (Biotech Support Group, New Jersey, USA).“.

Clinical signs of cholinesterase inhibitor toxicity can be measured from blood cholinesterase [Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE)] activity utilizing a modified Ellman’s method. Biotech Support Group’s unique solid-phase polymer for hemoglobin depletion, was used for pretreatment. The article states “Briefly, whole blood samples were treated with HemogloBind™ which interferes with the ChE activity assay due to spectral overlap.”

Gilt progeny (GP) often have restricted growth performance and health status in comparison to sow progeny (SP) from birth. To better understand underlying mechanisms, the study aimed to compare differences in growth and development between GP and SP in the first 24 h after birth and in the peri-weaning period. Because serum samples were quite hemolysed after collection and processing, it became necessary to use HemogloBind™ to allow
for better detection of IgG by ELISA. The article states "As per the manufacturer’s instructions, 250 μL of Hemoglobind was added to 250 μL of hemolyzed serum...

In brief, the study evaluated the role of a peptide inhibitor of complement C1 (PIC1) in an animal model of acute intravascular hemolysis in both prevention and rescue scenarios. The authors state "To remove free Hb that may cause optical interference in bilirubin analysis, we treated all the samples with Hb depletion from hemolyzed serum/plasma (Hemoglobind). Bilirubin concentration was then measured with a Bilirubin Assay Kit (Sigma-Aldrich, St. Louis, MO)."

Blood Substitutes

This study evaluated whether adding hydrogen sulfide donor AP39 to Hemopure, a blood substitute, during subnormothermic perfusion improves kidney outcomes. Because of the added Hemopure, the article states, "Most of the urine samples collected were heavily pigmented, due to the presence of hemoglobin from the Hemopure, which prevented the use of conventional urinalysis methods. A 1:3 dilution of urine in Hemoglobind (Biotech Support Group, Monmouth Junction, NJ, USA) allowed us to obtain clearer urine samples after 10 min of vigorous shaking and centrifugation at 12,000× g."

For a full list of Hemoglobin Removal References, visit: https://www.biotechsupportgroup.com/References-s/138.htm#hemoglobin-depletion

RELATED SAMPLE PREP PRODUCTS:
Albumin & IgG Removal products:

Lipid Removal Reagent and Clarification products:
https://www.biotechsupportgroup.com/Lipid-Removal-s/316.htm

CONTACT US
We welcome your questions, comments and concerns regarding our products.
Call 732-274-2866, Monday – Friday 9am-6pm EST.
Email sales@biotechsupportgroup.com
Mail 1 Deer Park Drive, Suite M, Monmouth JCT, NJ 08852, USA